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Abstract 
The advent of focal plane arrays revolutionized the field of photography. The availability 
of smartphones, first appearing on the market in the last decade, made everyone a 
“photographer”, and as for 2017, in USA there are roughly more smartphone cameras 
then there are people. Digital image quality is determined by the optics, the focal plane 
array sensor and the processing stage. For smartphone, the limited available volume 
allocated to the lens makes it very difficult to improve the image quality by optical 
solutions. As both conventional optics and sensor technologies have reached their peak, 
most of the advancements in that field have shifted to the domain of image processing.  

The field of Computational Photography (CP) has grown fast those last years, attracting 
the attention of top technological companies such as Google, Apple and Samsung. In CP, 
one manipulates the image acquisition stage to allow an efficient post processing stage 
for image processing and computer vision applications. In the scope of this dissertation, 
a computational camera design, aimed specifically for small-scale camera 
implementation, was investigated. Such camera provides extended depth-of-field 
(EDOF) imaging, and allows estimating a depth map from a single frame. Those features 
can be used for functions such as refocusing and 3D modeling, and can be incorporated 
in applications such as augmented reality and autonomous vehicles.  

One of the most challenging issues in imaging systems is the restoration of out-of-focus 
(OOF) images. The problem is notoriously ill-posed, since information is lost in the 
process. A symmetric binary phase mask offers a low-cost optical solution for increasing 
the camera's depth-of-field (DOF), providing acceptable quality for machine vision 
applications such as barcode reading and face detection. An RGB phase mask, whereby 
one acquires unique responses for the red, green and blue channels, resulting in a 
simultaneous acquisition of three perfectly registered images, each with a different out-
of-focus characteristic has been thoroughly investigated in this thesis.   

A major part of this dissertation is focused on methods for fusing the three RGB channels 
into a single-color image with extended DOF and improved appearance, via a specially 
tailored efficient post-processing algorithm based on sparse representation model. The 
computational stage has also been implemented on an FPGA module, thus providing an 
end-to-end, real-time imaging system that can blindly handle scenes that contain objects 
at different distances from the camera, making it ideal for natural every-day scenes. 

In the last part of this dissertation, two methods for estimating a depth map using a single 
frame will be presented. Since the RGB mask provides depth dependent color response, 
those color cues can be utilized for estimation the focus setting for each pixel in the image, 
which can be easily translated into absolute metrical values. The first method is based on 
the sparse model that was used for EDOF imaging. The second method is focused on fast 
implementation of depth map estimation using convolutional neural network (CNN). The 
presented simulation and experimental results demonstrate real-time performance with 
accuracy depth estimation.  
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1. Contribution and thesis outline 
This dissertation is organized as followed: 

Chapter 2 is dedicated to background review. The first section (2.1) presents the basic 
concepts in optics that were used in the scope of this dissertation. Section 2.2 reviews the 
related studies in the field of computational photography, and Section 2.3 reviews passive 
and active depth acquisition methods.  The following sections deal with the fundamentals 
of the processing methods that were used in the course of this research: sparse 
representation and dictionary learning is presented in Section 2.4 and Section 2.5 presents 
the basic concept in deep learning using convolutional neural network.  

Chapters 3-5 present the methodologies used in the scope of the research, each 
contributing to its respective field.   

Chapter 3 describes the optical aspect of this research. Section 3.1  presents the optical 
properties of a binary phase mask, in particular, depth dependent phase mask (Section 
3.2). The main contribution provided in this chapter is presented in Sections 3.3 and 3.4. 
The mask optimization process (3.3) is used for designing a depth sensitive phase mask 
for various optical configurations, as well as for compensating for spherical aberrations 
(3.4).  

Chapter 4 is dedicated for the EDOF imaging system computational process using sparse 
models. First, a non-blind deblurring method (4.2) is described as a reference to the novel 
blind method presented in Section 4.3. The experimental stage of real-life scenes is 
presented in 4.4. The end-to-end, real-time imaging system is presented in 4.5 with the 
utilization of the FPGA module. The last contribution in this chapter is dedicated to depth 
estimation using a sparse model (4.6) which, when combined with the all-in-focus image 
that our EDOF system produces, enables capabilities such as image refocusing. 

Chapter 5 takes the depth estimation one step forward with the introduction of CNN 
model in our phase mask optical system. The CNN utilized the color cues exhibited in 
the image captured with an RGB mask, and generates state-of-the-art performance in real-
time computational time. The two main contributions provided in this chapter are the 
integration of mask design within the CNN training process (Section 5.3) alongside real-
time performance with accurate metrical results for both simulated and real life images 
(Sections 5.4 and 5.5).    
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2. Background 

2.1 Basic concepts of optical imaging 

2.1.1 Ray optics 
Ray optics, or geometrical optics describes light as rays, travelling in optical media. 
Although ray optics does not predict many optical phenomena, it is very useful for 
describing and designing imaging systems.     

The basic imaging model describes light traveling from an object plane located at a 
distance  from a lens with a focal length f, to an image plane located at a distance of  

 from the lens plane as illustrated in Fig. 1. Perfect imaging refers to a scenario where 

all light rays exiting form a point at the object plane are conformed into a single point at 
the image plane. In this scenario, both image plane and the object plane support the well 
know ‘thin lens equation’ [1]: 

 .  (1) 

 

 

Fig. 1: Perfect imaging. The object and image distance from the pupil satisfies the ‘thin 
lens equation’. 

When the imaging condition is satisfied, the image obtained by geometrical optics is the 
scaled version of the object: 

   (2) 

where , the lateral magnification, is given by: 

   (3) 

In the scope of this section (unless noted differently), a paraxial approximation of a thin 
lens model is used whereby lens aberrations are neglected.  
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When the image and object planes do not satisfy the condition in Eq. (1), the resulting 
output image will be blurred.  In ray optics, imaging is considered still ‘in-focus’ when a 
point in the object plane results in a blurred spot smaller than a pixel size when detected 
by a pixelated detector array. This concept defines two important terms: Depth-of-Focus 
(DOFO) and Depth-of-Field (DOF). Consider a point object located at a distance u from 
the lens plane. The ideal image plane that satisfies Eq. (1)  is at a distance v as illustrated 
in  Fig. 2. The term DOFO defines the range whereby the image plane can be shifted by 

while the spot size is still within the width of a pixel. Using simple geometric 
considerations, DOFO can be defined as: 

   (4) 

where p is the pixel width and D is the lens diameter. 

 

Fig. 2: Depth-of-focus. The range whereby the image plane can be shifted by  while 
the spot size is still within the width of a pixel. 

 

The term DOF refers to a scenario in which the image plane is fixed at a certain distance 
v corresponding to a nominal object distance u as illustrated in  Fig. 3. The DOF defines 
a depth range whereby the object distance may vary without loss of resolution in the 

image plane, so that all objects stay in focus.  Using Eq. (1) the derivative  can 

approximate as: 

    (5) 

By rearranging this approximation, using Eq.(3) and Eq. (4), the DOF can be expressed 
as: 
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where is the well know f-number parameter which provides the light collection 
ability of the camera. As the aperture diameter increases more light is collected at the 
expense of the DOF.  

 

 

Fig. 3: Depth-of-field. The range whereby the object distance may vary while the spot 
size is still within the width of a pixel. 

 

Another useful term in DOF evaluation is the hyperfocal distance. Consider a case where 
the image plane is located at the focal plane, meaning perfect imaging for an object at 
infinity; the hyperfocal distance is the minimum object distance which will still be in 
focus in terms of a single pixel spot size, as illustrated in Fig. 4. The hyperfocal distance 

 is defined as: 

   (7) 

 

Fig. 4: Hyperfocal distance. The distance of which a point object image spot size is less 
than a pixel, as the image plane is set to the lens focal length. 
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2.1.2 Frequency analysis of optical imaging system 
Ray optics cannot describe that perfect imaging of light rays coming out of a point source 
with ‘aberration-free’ lens, do not produce a perfect point on the image plane, but rather 
a blurred spot, due to Diffraction limitations. On the other hand, the scalar model of wave 
optics predicts this phenomenon and is very useful for evaluating imaging systems 
performance. 

In this study the imaging system is described as a single “black box” element with a 
certain transfer function. For simplicity, we will assume the imaging system to consist of 
a single lens with a focal length of  as shown in Fig. 5. The object plane, lens plane 
and image plane coordinates are ,  and  respectively;  is the distance 

from the object to the lens and  is the distance from the lens to the image plane. 

 

 
Fig. 5: Basic imaging system using a thin lens. 

 
Coherent imaging exists in a controlled environment usually using lasers as a light source. 
Coherent illumination treats monochromatic illumination, harmonically time dependent, 
whereby the wave front phase at an arbitrary point is the phase of all the points in that 
wave front.  For such case, the system is linear in complex amplitude:  

   (8) 

where  is image amplitude,  is the object amplitude distribution, 

 is the magnification factor and  is the amplitude  transfer function 

(ATF) of the imaging system, whereby the lens aperture function is : 

   (9) 
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“Incoherent illumination” means spatially incoherent quasi-monochromatic illumination, 
harmonically time dependent, in which the phase of an arbitrary point is uncorrelated to 
the phase at any other point. This type of illumination is most common in natural scenes 
and therefore camera performance is evaluated under this regime. Imaging systems for 
such case are linear with respect to the intensity and not with respect to the field 
amplitude, as in the case of coherent illumination.  

For incoherent illumination, the output image  can be expressed by [1] : 

  (10) 

where: 

   (11) 

is the geometrical-optics ideal image intensity, is a real constant and  is the imaging 
system intensity point spread function (PSF): 

  (12) 

The properties and limitations of an imaging system, that is linear with respect to the 
intensity, can be analyzed in the spatial frequency domain. Imaging system performance 
can be best analyzed using the Optical transfer function (OTF). For incoherent imaging 
systems, the OTF describing the system response in terms of spatial frequencies, is the 
normalized Fourier transform of the intensity impulse response: 

  (13) 

It can be shown, using Eq. (9), that the OTF is the normalized autocorrelation of the 
system pupil : 

 

 (14) 

In the special case of an ideal circular pupil with no aberrations, the OTF is:  
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   (15) 

where and  is the cutoff frequency of the incoherent illuminated 

system: 

   (16) 

with as the pupil diameter. 

The Modulation transfer function (MTF) is the absolute value of the OTF and is one of 
the most common ways for describing imaging system characteristics. For a given single 
frequency target, such as a sinusoidal pattern that span from zero to one, the MTF 
provides the attenuation factor of that sinusoidal pattern. It is equivalent to the contrast: 

   (17) 

where are the maximum and minimum values of the output sinusoidal as 
illustrated in Fig. 6. 

In the special case of an ideal circular pupil as mentioned above, all frequencies which 
are equal or higher than the maximum spatial frequency  are not transmitted. Since 
they are above the cut-off limit, their contrast is zero. 

 

 

Fig. 6: Attenuation of contrast level for a sinusoidal input. 
 

2.1.3 Out-of-focus aberration effects on image quality 
As stated in Eq. (9) the PSF is proportional to the Fourier transform of the lens aperture 
function P only if the imaging condition is satisfied: 

  (18) 
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When this condition is not satisfied, the imaging system will suffer from out-of-focus 
(OOF) aberration which degrades the image quality, meaning lower contrast level and 
loss of information.  

The out-of-focus error can be analytically described as a wavefront error or a phase error 
in the pupil plane [1].  This phase error is expressed by the addition of a quadratic phase 
term in the aperture of an otherwise ideal imaging system. In the presence of out-of-focus 
aberration, the generalized pupil can thus be expressed as: 

  (19) 

where  is the detector position when the object is in nominal position ; is the 

actual object position. Clearly when in nominal position the bracketed term is null; this 
is the in-focus condition. In case of a circular aperture with radius R we define a defocus 
parameter  as: 

  (20) 

The generalized pupil in this case will be: 

  (21) 

The defocus parameter value  denotes the maximum phase error at the aperture edge.  
For  the image will suffer from contrast loss; for   it will experience severe 
information loss and even reversal of contrast for some frequencies as exhibited by the 
MTF curves in Fig. 7. The contrast reversal is demonstrated in Fig. 8 using a spoke target. 
As we go closer to the center of the target the contrast is reduced until it reaches the point 
where the black lines turn to white and vice versa.  

For a circular aperture, the diffraction limit maximum spatial frequency (or the cut-off 

frequency) is ; the resolution of the optical system increases as the aperture 

radius increases. At the same time, the DOF decreases as the defocus parameter  
increases, per Eq. (20), thus reducing the resolution of the OOF objects. 
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Fig. 7: MTF for a circular aperture for different value of the defocus parameter. 
 

       
Fig. 8: Spoke target: imaging results for in-focus (left) and for severe OOF (right). 

Notice the contrast reversal, which appears on the right target. 
In digital systems, a small error is permissible as long as the image size of a point source 
in the object plane is smaller than a single pixel in the detector plane. The range in which 
the object can move within the error limitation is called the depth-of field (DOF) which 
was also discussed in Section 2.1.1.  
 

2.1.4 Optical aberrations 
As described earlier in the Ray optics section, in case of an ideal lens, light from any point 
of an image will come to a focus on a single point at the focal plane. In practice, light 
does not focus to a single point, in the presence of lens aberrations. Those aberrations can 
be divided into two categories, Chromatic and Monochromatic aberrations. 
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Chromatic aberrations are caused by dispersion, which is the variation of the lens 
refractive index with wavelength. Effectively, this means that the focal distance will 
change for each wavelength. To overcome this type of aberration, a special lens design 
involving the use of several lenses with different dispersion, is required. 

Monochromatic aberrations are caused by the geometry of the lens. When light is 
refracted by spherical surfaces the rays do not all converge to a point, even if they are of 
one wavelength. Monochromatic aberrations can arise from surfaces with irregularities, 
but they also naturally arise from spherical refracting surfaces. 

To determine lens aberrations, one should apply Snell’s law to every incoming ray and 
trace out the ray path accurately, taking in account the geometry of the system and 
dispersion.  This is a very accurate way of describing the image formed by the lens and it 
fully includes the effects of monochromatic and chromatic aberrations.  However, it is 
very time consuming, and unfortunately this action cannot be condensed into simple 
mathematical expressions. Ray tracing software, such as ZEMAX, take this approach.  

Another way to analyze the lens aberrations is via wavefront analysis. The wavefront 
aberrations are the differences in the optical path between an actual wavefront and the 
ideal wavefront, as a function of position on the wavefront [2], [3].  

The Zernike polynomials provide an analytical tool for evaluating lens aberration [4]–[8] 
and system optimization [9]. The wavefront aberrations in lenses having a circular pupil, 
can be expressed as Zernike polynomials: 

   (22) 

where  is the normalized radius of the exit pupil, θ is the azimuthal angle, and	
are the even and odd polynomial coefficients respectively and n and m are positive 
integers . For even , the radial Zernike polynomial , are defined as:   

 ,  (23) 

and are identical to zero for odd . The polynomial coefficients are usually replaced 

with the more convenient Zernike coefficients . The first nine Zernike coefficients and 
their corresponding polynomial equations are listed in Table 1.    
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# n m Polynomial equation Aberration type 

 0 0 1 None 

 1 1  ‘x’ tilt 

    ‘y’ tilt 

 2 0  Defocus 

 2 2  Astigmatism along ‘x’ and ‘y’ 

    Astigmatism along ±45* from the ‘x’ axis. 

 3 1  ‘x’ coma 

    ‘y’ coma 

 4 0  Primary spherical 

Table 1: The first nine Zernike coefficient. 

 

2.1.5 Digital imaging 
Modern cameras use photodetector arrays to capture digital images. The CMOS sensors 
provide high performance with a low-price tag, making it the leading sensor technology 
today. Pixel size has also become smaller and the smallest one today (commercially) is 
around 1µm. 

There are two leading techniques to capture color images: (a) Three-CCDs are used in 
conjunction with color-separation beam splitter prisms that split the light into three 
sensors such that the three of them provide a full resolution RGB image; (b) A color filter 
array is placed in registration over the focal plane array where each pixel is covered with 
one of the R, G, or B color filters. The quantum efficiency curves provide the filter’s 
response for the entire visible wavelength (Fig. 9). The second option is the most popular 
technique since only one sensor is required.  
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Fig. 9: Quantum efficiency curve for color array filter 

 

The three different color channels of a standard sensor are organized in the form of a 
Bayer Matrix.  A Bayer Matrix mosaic, shown in Fig. 10, is a color filter array  that 
assigns the RGB color filters on a square grid of photo sensors. A particular arrangement 
of color filters is used in most single-chip digital image sensors used in digital cameras, 
camcorders, and scanners to create a color image. The filter pattern is 50% green, 25% 
red and 25% blue, hence it is called GRGB or in another permutation  RGGB. Sub-pixels 
should be decoded in order to fill the matrix of each color (R, G and B).  The process of 
decoding colors (Demosaicing) is done by the Image Signal Processor (ISP) in digital 
cameras.  
 

 

Fig. 10: Bayer matrix color array. 
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2.2 Computational photography 

2.2.1 Light field Imaging 
Light field imaging is one of the best example how CP can overcome conventional 
imaging limitations, allowing post-facto changes of the image DOF, focus point and even 
viewing angle. Adelson and Bergen [10] proposed the 7-dimensional Plenoptic function 

 to describe the light field positions in space for all directions, color 

and  time. In practice, the wavelength and time are usually omitted, and the ray space is 
represented as a 5D point. The two-plane light field introduced by Levoy and Hanrahan 
[11] and Gortler et al. [12], has been used in most studies. This 4D light field 
representation, describes a ray passing through two planes, using the 2D coordinates of 
its two intersections.  

The acquisition of light field can be done by several methods. Levoy and Hanrahan [11] 
used a video camera mounted on a computer-controlled gantry to capture large arrays of 
images, each in a different viewing position. Wilburn et al. [13] constructed an array of 
100 video cameras to capture the 4D light field simultaneously. Adelson and Wang [14] 
presented single lens Plenoptic camera where the light rays gathered through the main 
lens are recorded separately using a lenticular array placed on the sensor plane. Ng et al. 
[15] presented a hand-held light field camera, where a micro-lens array was placed on the 
sensor plane to separate the light rays gathered by the camera’s main lens, as illustrated 
in Fig. 11.  

The work of Ng paved the way for the first commercial light field camera introduce by 
Lytro, Inc [16], where the first generation utilized 100k microlens array on an 11MP 
sensor to produce a final resolution of 1.3MP (after computational rendering). The 
second-generation camera, Lytro ILLUM, used a 40MP sensor to produce a 4MP image. 
Both cameras are presented in Fig. 12. 

 

Fig. 11: Schematic diagram of the light field camera used in [15]. The main lens focuses 
the subject onto the microlens array which separates the converging rays into an image 

on the photosensor behind it. 
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Fig. 12: First (left) and second (right) generation light filed cameras from Lytro, Inc. 

 

Some of the post processing features, available in light field cameras, are represented in 
Fig. 13. As illustrated in Fig. 11, each microlens is responsible for forming a sub-image 
on a small section of the main sensor. This can also be represented as rays, emerging from 
several parts from the focal plane as shown in  Fig. 13.  A full aperture imaging is 
achieved by summing all pixels behind each microlens (Fig. 13, top). Reducing the 
aperture size can be done by summing only the central portion of the rays of each 
microlens (Fig. 13, center). Image refocusing is done by summing rays from several 
adjacent microlens (Fig. 13, bottom). 

 

 

Fig. 13: Illustration of few post processing feature available in light field cameras. 
(Top) full aperture imaging; (Center) small aperture with large DOF; (Bottom) image 

refocusing.   
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Light field cameras can also produce depth maps by creating a focal stack image that can 
be utilized for producing depth map (see Section 2.3.3). Several studies recently utilized 
the 4D light field data for accurate depth map estimation [17], [18]. 

As mentioned in this section, light field cameras provide many post processing features 
which are not available in conventional imaging. However, light field cameras suffer from 
low resolution, bulkiness, and noise and require a unique design, which makes it harder 
to integrate them into existing systems, especially small-scale ones. 

 

2.2.2 Computational sensors  
The field of computational sensors deals with methods for manipulating image sampling, 
to overcome conventional sampling limitation such as capturing moving object, high 
speed video and lensless imaging.  

In conventional imaging, opening the shutter for a specific exposure time is required for 
capturing a properly exposed single image.  Moving objects during the exposure time 
cause motion blur, which destroys high-frequency spatial details. One can reduce the 
motion blur by setting fast exposure time, but the loss of light will increase the noise of 
the captured image.  

A coded exposure camera modulates the exposure time by opening and closing the shutter 
within the exposure time using a carefully chosen binary pseudo-random code. The 
chosen exposure code produces an invertible motion PSF which allows using simple 
deconvolution methods to restore the blurred image. Raskar et al. [19] suggested such 
scheme using ferroelectric liquid crystal shutter set the exposure on/off, to enable severe 
motion blur restoration. This method relied on used intervention to crop the object of 
interest, assume linear 1D motion and reduce the light by 50%. A follow up paper [20] 
improved this technique by optimizing the coded exposure scheme for unknown motion 
direction and magnitude and increase SNR by allowing the ‘on’ time be greater than 50%. 
Tai et al. [21] presented a new approach for estimating spatially variant motion PSF but 
user assistant was still required of this scheme. McCloskey [22] utilized similar scheme 
using coded flash illumination instead of coded exposure. This method provided several 
advantages to coded aperture, most notable was increasing the signal (since shutter was 
open the entire time of image acquisition) but required external, camera synchronized 
flash device with a limited range such that this method can only be used for close distance 
objects. 

Unlike still cameras, capturing video required high bandwidth which introduce a 
fundamental tradeoff between spatial and temporal resolution. High speed video cameras 
required high frame rate, which usually decrease spatial resolution or increase camera 
cost due to special hardware requirements. Studies such as Hitomi et al. [23] Reddy et al. 
[24] suggested high speed video cameras, which were based on compressive sensing 
models, that implemented using a liquid crystal on silicon modulator, as a per-pixel coded 
exposure modulator.  Both papers presented similar results as in [23], 18 frames per video 
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frame were recovered which provided up to 1000 fps (with exposure time of 18ms per 
frame), with spatial resolution of , while in [24], 8 frame per video frame with 
spatial resolution of  were recovered, providing up to 250 fps form a 25 fps 
video camera. The notable limitations of those methods include 50% loss of light (due to 
the modulator), and required a precise alignment between the modulator and the camera. 

Another notable type of compressive sensing based cameras are Lensless cameras [25]–
[28] that eliminate the optics completely, thus leading to new types of thin cameras. 
Lensless cameras capture scenes using sensor, usually equipped with a coded mask, and 
required a preprocess calibration to allow post-processing image restoration. Those 
cameras are still in their proof-of-concept stage due to several limitations such as low 
resolution and high computational time.  

 

2.2.3 Coded aperture imaging 
As discussed in Sections 2.1.2 and 2.1.3, the PSF is determined by the pupil shape and 
size, as well as by the phase exhibited in that plane. Coded aperture techniques try to 
manipulate the PSF of conventional corrected (with no aberrations) imaging system, by 
introducing diffractive elements in the pupil plane [29]–[36]. Other studies utilize special 
uncorrected optical designs [37]–[40] to produce similar results. Such designs usually 
reduce the quality of the image obtainable for in-focus conditions, but offer other 
advantages such as EDOF and depth estimation abilities. Coded aperture techniques can 
be divided into two groups: the first one tries to produce a constant PSF for large DOF 
while the second group focuses on creating a unique PSF design for each depth.  

2.2.3.1 Constant PSF methods 
In what follows, techniques for creating imaging systems with constant PSF throughout 
the desired DOF are reviewed. Constant PSF means also corresponding constant MTF 
curves; nevertheless, those will be low, resulting in low contrast images. However, since 
the PSF is almost constant throughout the entire DOF, the resulting image contrast can 
be restored digitally, using a non-blind de-convolution algorithm [41] taking advantage 
of the uniform PSF provided by the imaging system. The main drawback of those 
methods is the extensive computational power required for utilizing the deconvolution 
algorithm. Another inherent issue is the noise amplification caused by such deconvolution 
operation. One should note however, that since the PSF is almost constant for all depths 
under consideration, the ability to extract depth information is very poor. 

Imaging methods that use a wave-front coding mask (either phase, or amplitude, or both) 
became more attractive in the last two decades. One of the first and most prominent 
studies in this field was carried by [29], where a cubic phase mask was designed to 
generate a constant PSF for large DOF. A different approach is based on radially 
symmetric binary optical phase masks [33] composed of one or several rings providing a 
predetermined phase-shift (usually, π value) and with an optional amplitude ring.  Unlike 
the difficulties encountered in the fabrication of phase profiles of 3rd order polynomial 
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degree structures, such as the cubic mask, the binary phase masks are easy and 
inexpensive to manufacture on a mass production scale.  

One should note that the cubic as well as the binary phase masks provide the exact desired 
phase shift for a single wavelength only, whereas the phase shift for other wavelengths 
changes accordingly. A polychromatic phase mask [34] can overcome this limitation by 
optimizing the mask parameters to achieve similar phase shift for all wavelength. A 
different approach relies on a pair of masks with inverse profiles and different dispersion 
properties [42]. This “doublet-like” mask design is more complex than a simple mask but 
can provide the desired phase shift for all wavelengths, if so desired. 

Using an uncorrected lens with optical aberration [40] or purposely designing one with 
specific spherical aberration [39], one can also produce constant PSF at the expense of 
reducing the image quality for in-focus scenarios. The advantage of such an approach is 
that there is no need for additional diffractive elements in the lens assembly. Moreover, 
the design of the lens is much simpler since there is no need for many corrected elements. 

Focal sweep is a technique whereby one captures several images of the same scene while 
changing the focus point. This technique can be used for EDOF and depth estimation, but 
it requires acquisition of several images. To produce an EDOF image from a single frame, 
Kuthirummal et al. [43] moves the focus point while the picture was captured and uses a 
computational stage to recover the EDOF image. This approach was presented later in 
[44] using a radial diffuser which acted as a passive focal sweep element.  Similar concept 
was implemented using uncorrected lens as a type of spectral focal sweep [37] such that 
the amplified chromatic aberration produces a constant PSF, an average for all 
wavelength.  

2.2.3.2 Depth sensitive PSF 
The constant PSF approach produces “flat” images without depth-related changes, 
making the restoration process much simpler as the PSF is known in advance. However, 
for depth estimation purposes, the PSF should be depth-dependent, while at the same time 
retaining enough information to restore a reliable EDOF image in its entirety.   

A study by Levin et al. [31] used an amplitude-coded aperture with a conventional camera 
to produce an all-in-focus image allowing depth estimation after proper digital 
processing. A related method presented by Zhou et al. [45] uses amplitude-coded aperture 
pairs for depth from defocus and deblurring. Although Zhou et al. [45] improved the depth 
estimation presented by Levin et al. [31], the obvious downside is that this process 
requires taking two images while switching apertures between two frames and keeping 
the camera still as well.  The main drawback of both solutions based on amplitude masks 
is the reduction of light efficiency by 50% on the average.  A view of these masks is 
shown in Fig. 14. 

Another related study utilized a color-dependent ring mask [46], whereby  the aperture 
size, and as a result, the DOF, is color-dependent. This spectrally-varying DOF has been 
used for EDOF and depth estimation whereby the foreground and background can be 
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segmented for refocusing purposes. Similar to the solutions based on amplitude masks 
mentioned in the previous paragraph, the light efficiency of this case is reduced by 60%, 
making it unsuitable for low light conditions. 

A different approach, proposed by DxO labs [38], utilizes a lens with deliberately high 
chromatic aberration to achieve color separation. However, increasing longitudinal 
chromatic aberrations while reducing other types of aberrations (lateral chromatic 
aberrations, spherical aberrations …) requires special lens design. 

 

 

Fig. 14: Amplitude masks example: left - Levin et al. [31]; right - Zhou et al. [45] 
  

Milgrom et al. [35] proposed the use of a special RGB phase mask that exhibits 
significantly different response in the three major color channels R, G and B. It has been 
shown that each channel provides best performance for different depth regions, so that 
the three channels jointly enable coverage of an extended DOF. Its major advantage is 
light efficiency above 95%. This method was specifically designed for use of EDOF in 
barcode imagers. A follow-up on this approach is investigated in this dissertation for 
EDOF imaging of natural scenes [36], [47] as well as for estimating a depth map from a 
single image. Details are provided in Section 3. 

 

2.3 Depth imaging 

2.3.1 Stereo 
One of the earliest passive depth sensing techniques generally involve stereo camera 
systems [48]–[50]. The camera uses stereo triangulation to generate depth information. 
The process requires the calibration of two or more cameras that simultaneously capture 
2-D images of a scene, each one from a slightly different angle. An algorithm, known as 
the correspondence problem, is then used to locate corresponding pixels in the images. 
The stereo camera approach has several disadvantages. The disparity problem arises when 
one image captures a feature that is not contained in the other image due to occlusion of 
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objects. Another common issue is that uniform areas with few objects, or areas containing 
many objects, can greatly reduce accuracy [51].  

 

 
Fig. 15: Stereo camera illustration. The left and right sensors are centered at  and 

 respectively.  
 

The basic concept of stereoscopy is illustrated in Fig. 15. A point object   will 

project a point on each of the two left and right sensors located in  respectively. 
Camera calibration step [52] is required to compensate for small variation in manufacture 
or assembly.  The distance between the centers of the two left and right sensors is called 
Baseline, which affects the depth measurement accuracy i.e. a larger baseline provides 
better angular resolution. Using the known camera parameters such as focal lengths, pixel 
sized, and baseline, the equations of the projection lines through these image points is 
calculated to evaluate the distance z: 

   (24) 

The depth measurement accuracy [53] is dependent on several parameters: noise, which 
reduce the ability of finding the correct correspondence point; pixel size, which directly 
correlate with the disparity term  evaluation accuracy; focal length and baseline 

(Eq. (24)). Another important limitation is related to the DOF of the camera, determined 
by the finite aperture size. Finding the correspondence required some texture, which 
cannot be detected in blurry areas outside the DOF of the camera. For this reason, the 
aperture size in stereo cameras is usually small to produce large DOF, however this also 
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increases noise. In addition, such a dual camera system significantly increases the form 
factor, cost and power consumption.   

       

2.3.2 Active illumination methods 
Active depth sensing methods composed from a single camera and a light emitting source. 
The classical active depth sensing methods is the time of flight method [54], which have 
been used in many LIDAR (a backronym for Light Detection and Ranging) applications, 
in robotics and the autonomous vehicles.  

Time of flight depth sensors collect data using transmitting a signal, generally a light 
wave, and measuring it as it reflects from the object. The time of flight and the speed of 
the signal are then used to calculate an accurate depth measurement. As its accuracy is 
inversely related to the distance traveled, time of flight sensor required to distinguish 
between femtoseconds, making it more useful for outdoor depth sensing [55]. However, 
time of flight depth sensing methods usually produce very dense range images and require 
little or no image processing.  

Time of flight devices use single laser stripe scanned progressively over the surface of an 
object, required the object to be static during scanning process. To overcome this 
limitation, coded structured light depth sensing methods involve the projection of a light 
pattern such as multi-stripe and sinusoidal fringe [56]. Each point in the pattern is encoded 
with information that identifies its coordinates [57]. Once each point of light is reflected 
and captured by a sensor, the depth map is calculated using triangulation methods (see 
Fig. 16) which is similar to the one presented in stereo [58]. However, as opposed to 
passive stereo, the correspondence problem is solved by the encoding of the projected 
light.  
 

 

Fig. 16: Structured light system illustration. (source [59] ) 
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The well know Kinect sensor utilizes structural light projection alongside an RGB sensor, 
thus providing consumers an affordable device that can collect both depth and color 
images [59]. The Kinect has been used to create RGBD data sets such as NYUD [60], 
[61] which are used in many computer vision depth learning methods.  

 

2.3.3 Depth from focus or defocus  
Depth from Focus (DFF) refers to method for depth estimation from an input consisting 
of several images of the same scene, captured with different focus point, commonly 
known as focal stack [62]–[65]. This can be achieved by keeping the camera still, while 
moving an object along the optical axis (using a rail) or by keeping the object still while 
changing the camera focus point (usually by varying the distance between the sensor and 
the pupil plane).  Depth can be estimated by identifying an image from the focal stack 
which exhibits highest sharpness. This process is repeated for each pixel (or a small 
patch). As the number of frames is limited, usually the object will not be in perfect-focus 
for a specific image, or part of it. Nevertheless, one can interpolate the location of the 
ideal focus point based on the responses from adjacent images. By stitching together the 
sharpest in-focus pixels across the focal stack, DFF can also generate an all-in-focus 
image [64], [65]. 

The main drawback of DFF is the need of acquiring several images while the scene 
remains still. This scenario is plausible when using DFF for static scenes with controlled 
environment, such as industrial inspection, but in practice, frames in the focal stack are 
not perfectly aligned.  Suwajanakorn et al. [64] ] introduced a method to compute depth 
maps with mobile phone cameras, by aligning a focal stack of 25 frames to overcome 
scene parallax issue (see Fig. 17). The computational time for producing a 
depth map and all-in-focus RGB image was around 20 minutes. Kim et al. [65]  extended  
this process for video, but only one depth map produced for each focal stack (30-100 
frames). In both studies, the assumption was that the motion in the scene is minor and 
lightening condition remains the same.  

Similar to the DFF method, Depth from Defocus (DFD) also captures several images with 
the same focus point but with different aperture settings [66], [67]. In-focus areas appear 
quite independent of the aperture setting, but OOF areas get increasingly blurry when the 
aperture is widened. This method also suffers from the same alignment issues as DFF.  

DFD can also be achieved with a single image. Tai and Brown [68] use local contrast 
prior to measuring the defocus at each pixel and then apply Markov Random Field (MRF) 
propagation to refine the defocus map. Zhuo et al [69] estimated the amount of defocus 
blur at edge locations by blurring the input image, using a known Gaussian kernel, and 
calculating the ratio between the gradients of input and blurred images. By propagating 
the blur amount at edge locations to the entire image, a full defocus map can be obtained. 
Several papers presented similar approach with improved performance [70], [71]. The 
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reported computational time in [71] for producing an depth map was around 3 
minutes utilizing MATLAB implementation.  

 

 
Fig. 17: Illustration of the proposed scheme in [64]. The focal stack capture using a 

mobile phone used to compute all-in-focus image and a depth map estimation. 

 

2.3.4 Monocular based algorithms   
Depth perception in human vision relies on both binocular and monocular cues [72]. As 
presented in Section 2.3.1, binocular cues are based on human stereo vision, as disparity 
between two different view-points of the same scene allows triangulating the distance to 
an object. Monocular cues however, depend on a single view, and are based on visual 
features observed in a static view of a scene, or motion-based cues, which are based on 
motion parallax, where nearby objects appear to move faster than farther objects.  

Visual features observed in a static view can be described by eight types of cues [72]: 

Occlusion: occurs when one object partially hides another one in a view. The occluded 
object appears farther to the observer, which provides information about relative depth. 

Perspective Convergence: When parallel lines extend from an observer, they appear as 
if they are converging as distance increases.  

800 600´
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Relative size: Given two objects of equal size, the one farther to the observer appears to 
be smaller. This cue depends on the observer’s knowledge about the objects actual size.  

Familiar size: Given two objects of different known sizes, one can judge distance based 
on prior knowledge about the size of the objects. For example, if the objects appear in the 
image to have the same size, the observer will assume that the smaller one is closer.  

Relative height: This cue is related to the position of objects with respect to the horizon 
line in the visual field. Objects that are near the horizon usually appear at distance.  

Texture gradients: As distance increases, patterns of a textured surface get finer and 
appear smoother.  

Atmospheric Perspective: Details of distant object are degraded by atmospheric 
conditions like haze, fog, and smoke. As distance increases, details are less visible with 
respect to those which are closer.  

Shadows: The cast shadow of objects can provide information about the 3D object shape, 
and its relative location in the scene. 

Many studies in computer vision have utilized those monocular cues to predict depth map 
from a single image. Saxena et al. [73] estimated an absolute depth map, using features 
such as texture energy, texture gradients, and haze, calculated from square image patches 
and their neighbors at multiple size scales. Features for relative depth were also 
computed, based on the difference between neighboring patches’ histograms of the 
absolute depth features. They then modelled the depth estimation problem as a Markov 
Random Field (MRF), using both Gaussian and Laplacian distributions for a posteriori 
distribution of the depth.  

Eigen et al. [74] employed an architecture of two deep neural networks to the depth 
estimation problem, one of which makes a coarse global prediction, and the other one 
locally refines it. The deep network requires massive amounts of training data, so it is 
further augmented by applying scaling, rotation, translation, color variation, and 
horizontal flips to existing data. Liu et al. [75] train a deep neural network architecture, 
based on learning the unary and pairwise potentials of a Continuous Random Field (CRF) 
model, using a deep CNN framework.  

Chen et al. [76] follow up on research by Zoran et al. [77], on estimate metric depth, using 
depth relations between pairs of points in an image. By training the network on a large 
dataset, they achieve metric depth prediction performance compared with algorithms 
trained on dense metric depth maps such as Eigen et al. [74]. 
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2.4 Sparse representation 

2.4.1 Background  
Ideas of sparse, redundant, and otherwise parsimonious representations have attracted 
considerable attention in the field of signal processing and beyond [78]–[81]. As opposed 
to the conventional priors on signals such as “band limitedness” set be by classical 
Nyquist-Shannon sampling theory, these approaches assert that certain signals can be 
represented using only a few “atoms” in a redundant dictionary. When incorporated into 
the analog-to-digital conversion setup, these ideas suggest that appropriately designed 
linear measurements can sense the signal directly in a domain in which it has a low-
dimensional representation, leading to compressed sensing (CS) techniques. CS was 
successfully used for efficient data acquisition protocols in several fields, most notably 
in medical imaging. CS is used to speed up MRI while preserving diagnostic quality [82], 
[83], in CT imaging [84] to reduce radiation exposure, and in medical ultrasound to 
reduce the data transfer rate and allow wireless probes [85], [86]. 

Flavors of sparse and redundant representations [87]–[94] have been proved as a powerful 
tool for image processing, compression, and analysis. It is now well-established that small 
patches from a natural image can be represented as a linear combination of only a few 
atoms (predefined patches) in an appropriately constructed over-complete (redundant) 
dictionary. This constitutes a powerful prior that has been successfully employed to 
regularize numerous otherwise ill-posed image processing and restoration tasks such as 
denoising [87], [95], [96], image inpainting [97], [98], super-resolution [88], [91], [99], 
demosaicing [100] and more. 

 

2.4.2 Sparse representation of natural images 
Sparse representation of natural image signals has been proven in recent years to be a 
powerful tool for image representation. Natural images share common features over small 
patches and therefore by using an overcomplete dictionary one can represent those 
patches as a linear combination of a few predefined patches from our dictionary.  

Consider a signal column vector  and dictionary  composed of   
columns atoms signals. The signal  has sparse approximation over  if one can find a 
vector , having only a few non-zero coefficients, such that  will give a close 
approximation of the signal . This sparse approximation problem can be described as: 

  (25) 

where counts the number of non-zeros in the vector , and  controls the relative 

importance of the regularization term over the  data fitting term. 

Taking into consideration an additive Gaussian noise and a representation error, the 
problem in Eq. (25) can be formulated as:  
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   (26) 

where is the allowed representation error. In this form, the solution to Eq. (26) 
favors sparsity of  over data fitting. An alternative form of the above problem 
exchanges the data fitting term with the constraint, 

   (27) 

where S is the target sparsity.   

While the  norm minimization problem is known to be computationally intractable, 
approximation and relaxation methods exist. In particular, theoretical results in [101], 
[102] suggest that under certain conditions on the dictionary (high mutual incoherence), 
the regularization term can be relaxed into the convex : 

   (28) 

while keeping the relaxed problem equivalent to the original one. The above LASSO 
problem [101] can be solved using numerous algorithms such as coordinate descent 
[103]–[105], Least Angle Regression (LARS) [106] and the Iterative Shrinkage 
Thresholding Algorithm (ISTA) [107]–[113]. 

 

2.4.3 Iterative-shrinkage algorithms 
Minimization problem (28) is a convex program that can be solved using ISTA [107]–
[113].  Given a gradient descent step size , ISTA first performs a gradient descent step 
on the smooth ( ) part of the objective: 

   (29) 

The algorithm monotonically decreases the value of the objective function if the inverse 
of the gradient step size , is larger than the largest eigenvalue of  . Next, the 

element-wise soft-thresholding operator implementing the proximity map of the non-
smooth  term is applied: 

   (30) 

The ISTA algorithm scheme is presented in Fig. 18.  

The simplicity of ISTA make it attractive for solving large-scale problems, however, it is 
also known to converge slowly. Beck and Teboulle [112] presented a fast version of ISTA 
(dubbed FISTA) which preserves the computational simplicity of ISTA but with a global 
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rate of convergence which was proved to be faster than ISTA (in fact, the fastest possible 
for first-order methods). 

 

Inputs: 
Ø signal   and dictionary   
Ø regularization parameter  and gradient descent step size  
Ø number of iterations T 

Output: 
Ø Approximation vector  such as  

Initialization: 
Ø Initial solution  

Main iteration loop: (set t=1) 
Ø While ( ) 

• Perform gradient descent step: 
   

• Apply soft thresholding operator: 
 

•   
Ø End while 
Ø Set the solution to:  

Fig. 18: The ISTA algorithm 

 

2.4.4 Orthogonal matching pursuit 
In addition to the convex relaxation techniques, another family of approaches to tackle 
the intractability of the  norm minimization problem is greedy approximation, of which 
Matching Pursuit (MP) and its variant, the Orthogonal Matching Pursuit (OMP) [114]–
[116] are prominent members. 

The MP algorithm starts by finding the best fitting atom which presents the largest inner 
product with the signal in (25). This atom index is then added to the support I of the 
representation vector . Next, one finds the second atom which fits the residual and after 
adding it to the support I, the coefficient vector  is recalculated such that it will 
minimize the data term , where the dictionary is equal to  for 

column vectors with indices I and zero elsewhere. The process terminates when either the 
size of the support I reaches the sparsity threshold S, or when the data fitting term becomes 
smaller than the error threshold . Note that the algorithm is greedy since atom indices 
added to the support at previous iterations cannot be removed. Unlike MP that greedily 
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approximates both the support and the related coefficients (i.e., the values of  are never 
re-calculated), the OMP variant recalculates  at every iteration by solving a simple 
least-squares problem with the current support. The OMP scheme is described in Fig. 19. 

 

Inputs: 
Ø signal   and dictionary   
Ø error threshold  and sparsity threshold S 

Output: 
Ø Approximation vector  such as  

Initialization: 
Ø Initial solution  

Ø Initial residual  

Ø Initial support  
Main iteration loop: (set k=1) 

Ø While ( ) 
1. Estimate best fit atom index as: 

   

2. Update index vector:  
3. Update solution:  

4. Compute residual:  

5. Stop if otherwise   

Ø End while 
Ø Set the solution to:  

Fig. 19: Orthogonal Matching Pursuit algorithm.  

 

2.4.5 Dictionary learning  
Natural images share common features over small patches. The dictionary  can be 
produced from either predesigned transforms [117], [118] such as DCT (Discrete Cosine 
Transform), Wavelet [119], [120], contourlets [121], [122], bandlets  [123], [124], 
curvelets [125], [126] or from a set of sampled data from training images [95], [127]. The 
latter has been selected as the favored dictionary for image deblurring in many studies 
and will also be used in the scope of this dissertation. 

The dictionary learning process is based on finding a dictionary  that minimizes the 
objective function in Eq. (25) on training data. One of the most popular methods for 
dictionary training is the k-SVD method [127] which is an  iterative process, alternating 
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between finding the best vector coefficients using OMP and then updating  according 
to the current coefficients vector using Singular Value Decomposition (SVD). 

Giving a set of sample signals  which can be represented as a matrix , 

and the corresponding sparse coefficients matrix , the k-SVD process attempts 
to factorize  into the product , wherein the right factor  is sparse. This is achieved 
by minimizing: 

  . (31) 

The first step in k-SVD is to find a sparse coefficient matrix . In the second stage, each 
atom is optimized one at a time. To isolate the k-th atom, , the data term from (31) is 
written as: 

   (32) 

In this form, the matrix multiplication   was replaced with the summation of N rank-
1 matrices. Notice that the row vector  in the k-th row in matrix , should not be 

confused with the k-th column vector . 

The error matrix is defined as the data error when removing the k-th atom from the 
dictionary: 

  . (33) 

One can use SVD to update the atom  and corresponding coefficients row  to 

minimize (32), but this will result in a non-sparse , as such, the representation matrix 

 will also not remain sparse. To avoid this issue, we define the indices group  that 

points to the examples of  that use the atom , i.e. nonzero entries of :  

   (34) 

Now we can define the restricted matrix (  is equal to length of ) , with 

ones on the  entries and zeros elsewhere. This matrix shrinks the vector  

such that the vector  contains only nonzero entries. The restricted error matrix 
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 can also be represented as the only the columns in that correspond to 

examples that are using the atom . Using the above notation, the minimization of the 

 keep the support of  intact.  

Using SVD, the restricted error matrix can be decomposed to and update 

the atom  as  (the first column of ) and  as the first column of multiplied by 

. The full scheme of the k-SVD algorithm is presented in Fig. 20. 
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Inputs: 
Ø Examples group   and initial dictionary   

Ø error threshold  and sparsity threshold S 
Ø maximum iteration limit K 

Output: 
Ø Dictionary which best represents the data examples (Eq. (31))  

Initialization: 
Ø Initial Dictionary with random N samples form the examples group 
Ø  Initial solution  

Ø Initial residual  

Ø Initial solution index vector  
Main iteration loop: (set k=1) 

Ø While ( ) 
Sparse approximation stage: 

Apply OMP to find the sparse coefficient matrix   
Ø For  

 

Ø End 
Dictionary update stage: 

Ø For  

Ø Calculate the error matrix  

Ø Find the indices group with points to examples that use the atom  

 

Ø Calculate the restricted matrix  

Ø Calculate the restricted error matrix  

Ø Apply SVD  

Ø Update atom  

Ø Update coefficients row vector as   

Ø End  
Stopping criteria: 

Ø Stop if  otherwise   

Ø End while 
Ø Set the solution to:  

Fig. 20: k-SVD algorithm. 
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2.5 Basic concepts of convolutional neural networks 

Convolutional Neural Networks (CNNs) are multi-layer feed-forward networks, inspired 
by Hubel and Wiesel’s study of neurobiological signal processing in cat’s visual cortex 
[128].  Based on first technical realization of the brain visual recognition from Fukushima 
[129], LeCun et al. [130] created one of the first CNNs that was trained to recognize 
handwritten characters (Fig. 21.). Following this study, several deeper CNN structures 
were created to solve classification tasks based on two-dimensional input images [131]–
[133]. Deep neural networks have (CNNs in particular) created revolution by achieving 
state-of-the-art results in many tasks across different domains of science and engineering 
such as speech recognition [134], sentence classification [135], gene ontology annotation 
predictions [136], and even for advertising [137]. 

Using convolutional layers, the networks can learn to recognize local features, such as 
edges or corners, by restricting the receptive fields of hidden layers (layers between input 
and output layers which their value is not given by the data) to local connectivity and to 
add shift invariance by enforcing spatially shared weights. Furthermore, spatial 
subsampling in the form of pooling layers reduces sensitivity to shifts and distortion. 

2.5.1 CNN architecture 
The input and output of each layer are sets of arrays called feature maps. Those three-
dimensional feature maps can be connected with different types of layers. 

Convolutional layers consist of multiple filters that are defined by their weights. The 
layer defines the number of filters and their kernel size, the stride in which they are 
applied and the amount of padding to handle image borders. The convolved output of a 
filter is called a feature map and a convolutional layer with n filters creates n feature 
maps, which are the input for the next layer as illustrated in Fig. 21. 

 

 

Fig. 21: Architecture of LeNet-5 [130] CNN for handwriting recognition. 
 

Pooling layers reduce feature map resolution and thereby the sensitivity to shift and 
distortions, as exact feature location is discarded, and only relative and approximate 
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location information remains. Typical polling method called Max-pooling, outputs the 
maximum value within a rectangular neighborhood of the activation map.  

Another way of reducing the data volume size is adjusting the stride parameter of the 
convolution operation. The stride parameter controls whether the convolution output is 
calculated for a neighborhood centered on every pixel of the input image (stride 1) or for 
every n-th pixel (stride n). Research has shown that pooling layers can often be discarded 
without loss in accuracy by using convolutional layers with larger stride value [138]. The 
stride operation is equivalent to using a fix grid for pooling. 

Batch Normalization layer [139] quickly became very popular mostly because it helps 
to converge faster. It adds a normalization step (shifting inputs to zero-mean and unit 
variance) to make the inputs of each trainable layers comparable across features. It allows 
using a high learning rate while keeping the network learning, which reduce the training 
steps. In addition, batch normalization allows to use saturating nonlinearities such as tanh 
and sigmoid, by preventing the network from getting stuck in the saturation mode (e.g. 
gradient equal to 0). 

Rectified Linear Unit (ReLU). After each conv layer, the convention is to apply a 
nonlinear layer (or activation layer) immediately afterward. This was found to greatly 
accelerate the convergence of stochastic gradient descent compared to the sigmoid/tanh 
functions due to its linear non-saturating form [140]. It also helps to alleviate the 
vanishing gradient problem, which is the issue where the lower layers of the network train 
very slowly because the gradient decreases exponentially through the layers. The ReLU 
layer applies the function  to all the values in the input volume. In basic 

terms, this layer just changes all the negative activations to 0.  

Fully Connected layer takes an input volume (whatever the output is of the conv or 
ReLU or pool layer preceding it) and outputs an N dimensional vector where N is the 
number of classes the CNN is designed to predict. A fully connected layer takes the output 
of the previous layer (which represent the activation maps of high level features) and 
determines which features most correlate to a particular class and has particular weights 
such that when you compute the products between the weights and the previous layer, 
you get the correct probabilities for the different classes. 

Deconvolutional layer. For classification purposes, the size of the feature maps becomes 
smaller in deeper layers of the network, resulting a prediction vector for the probability 
of an image to be classify as a certain class. A pixelwise prediction, such that 
classification for each pixel can be calculated,  can be obtained by a deconvolutional layer 
[141].  Long et al. [142] used the deconvolutional layer and utilized bilinear upscaling to 
initialize the deconvolutional weights thus  producing larger output map as illustrated in 
Fig. 22.  

Fully Convolutional Network (FCN). Introduced by Matan et al. [143][30], the basic 
idea of a fully convolutional network is the size independence of the input image. This 

( ) ( )max 0,f x x=
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can be thought of as if the fully connected layers of conventional CNNs are converted to 
convolutional layers with a specific filter size. The fully connected layers can be 
interpreted as convolutional layer with a filter size of the last feature map. For this reason, 
the two types of layer can easily be transformed by just copying the weights. The final 
output of an FCN is a feature map, which can produce different output feature map sizes 
in dependence of the input size. 

Long et al. [142] introduced a fully convolutional network structure with deconvolutional 
layers, which was trained end-to-end for semantic segmentation. This combination of the 
layers facilitates a two-dimensional output of the neural network for each class, where 
the output has the same size as the input (see Fig. 22) and, as a result, a pixelwise 
classification is produced. 

 

 

Fig. 22: Fully Convolutional Network for pixelwise semantic segmentation [142] 

 

2.5.2 Training  
The training process of the CNN is the most important part since it provides the weights 
for each layer. For training, both input image and ground truth data are available. All the 
network parameters are generally initialized with zero mean Gaussian random variables.  

An image fed to CNN during the first forward pass will result with a prediction vector 
that will most likely provide equal prediction for all classes. To quantify the capacity of 
the network to approximate the ground truth labels for all training inputs, a loss function 
is defined such as Mean Square Error (MSE) or Cross Entropy.  

MSE loss is defined as: 

   (35) ( ) 21, i i
i
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with an n-prediction  vector and a binary vector  of zeros except a one in the 
corresponding class dimension. 

The Cross-Entropy loss is defined as: 

   (36) 

While MSE give too much emphasis on the incorrect outputs, cross-entropy considers the 
closeness of a prediction and is a more granular way to compute error. 

After computing the prediction and its associated loss for each example, we sum up all 
the loss to compute the final error. A backpropagation algorithm is then used to update 
the weights. To find which weights contribute mostly to error of the network, the partial 
derivatives  of the cost function  for all weights , is calculated. Once all the 
derivatives are computed, the weights can be updated using a chosen optimization 
technique such as Stochastic Gradient Descent (SGD) [144]. This back and forward 
process (forward pass, backward pass and optimization) constitute a single training cycle. 
This process is repeated for a specific number of times for each set to training images 
commonly known as a batch. Once finished, hopefully a low enough local minimum is 
found such that the network should provide good predictions [145]. 

   

ix iy

( ) ( )
( )

exp
, log

exp
i

i
i j

j

CrossE
æ ö
ç ÷

= - × ç ÷
ç ÷
è ø

å å
x

x y y
x

/E w¶ ¶ E w



50 
 

3. RGB phase mask 

3.1 Binary phase mask 
Radially symmetric binary optical phase masks have been proposed for overcoming 
limitations set by OOF imaging [33]. A phase mask, incorporated in the optical train is 
meant to compensate for the OOF phase error by adding a constant phase shift near the 
aperture edge. Careful design of the phase level along a radial ring, results in an increased 
DOF. The drawback is that one gets a reduced contrast level when the image is in-focus. 
For computer vision applications, as for instance for barcode reading, those type of masks 
offers all-optical solution for EDOF. 

To provide increased DOF for both positive as well as negative values of , those masks 
consisted of one or several rings, each exhibiting a phase shift of π radians for a center 
wavelength (as illustrated in Fig. 23). However, such phase mask provides the exact 
desired phase shift for a single wavelength only, while the phase shift for other 
wavelengths changes accordingly. Milgrom at el. [34] addressed this wavelength 
dependent issue by carefully designing the mask parameters as a function of the visible 
wavelength range such that the mask will provide EDOF for color cameras. 

 

 

Fig. 23: Single ring phase mask 

 

The phase shift is achieved by creating layers of depth d into a glass plate with a refractive 
index . For a wavelength , the phase difference  created by the depth gap d can 

be expressed as: 

   (37) 

To achieve a phase shift of , the ring depth should be: 
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   (38) 

The ring depth d was designed for a wavelength . Considering a low dispersion glass 

where  is almost constant in the range of the visible light, the phase shift for a 

different wavelength , can be expressed as: 

   (39) 

The phase mask adds a constant phase ring to the imaging system aperture in order to 
compensate the phase error caused by OOF conditions. Both the defocus parameter 
(Eq. (20) as well as the cutoff frequency  depend on the wavelength. For consistency, 

both parameters will be referred with respect to the Blue wavelength . Thus, 

the defocus parameter  for wavelength   will be expressed as: 

   (40) 

Accordingly, the wavelength dependent cutoff frequency   (Eq. (16)) will be 

expressed as: 

   (41) 

After setting the extent of the desired range that one would like to handle and the 
acceptable minimum contrast of the resulting image, one selects the number of phase 
rings to implement in the mask, and then determines the appropriate rings’ radii by 
solving the following optimization process: 

   (42) 

where  is the mask radii vector,   is the defocus measure,  is the spatial frequency, 
and  is the desired acceptable minimum contrast value. The result of the optimization 
process expressed in Eq. (42) provides the ring radii that will maximize the minimum 
(worst) spatial cut-off frequency set at the minimum acceptable contrast level, along the 
entire DOF under consideration. 

One should note that the cut-off frequency is determined by the acceptable minimum 
contrast value, rather than by the frequency with zero contrast, as commonly used [34]. 
This distinction provides a more realistic requirement, although it reduces the resulting 
DOF extent. The optimization goal is to extend the cut-off frequency, while at same time 
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maintaining an acceptable minimum contrast value; post-processing techniques could 
enhance existing contrast in the optical image, provided it is above a minimum level, 
restricted by the acceptable noise level. Image data with contrast below that level is 
considered lost, and cannot be restored 'a-posteriori'. One should note that different 
considerations in the design of the optical system are possible. Those will result in other 
optimization goal, as for instance maximizing the 'area under' the MTF.  
 

3.2 Mask design for depth-sensitive PSF  
Milgrom et al [35] proposed the use of a special RGB phase mask that exhibits 
significantly different response in the three major color channels R, G and B. It has been 
shown that each channel provides best performance for different depth regions, so that 
the three channels jointly provide an extended DOF. The mask considered in [35] 
provided a phase shift of   for a blue wavelength and consequently  phase shift for 
a red wavelength. Therefore, such mask did not affect the red channel imaging 
performance, obtained by virtue of the full-size aperture.  

Unlike barcode objects, natural images exhibit mostly low spatial frequencies. Moreover, 
the purpose of the mask was to increase the diversity between the three main color 
channels R, G and B. Increasing the phase shift to several , will increase the sensitivity 
to changes in wavelength (Eq. (39)), which should increase the diversity between colors. 
Unlike Milgrom et al [35] that used a  mask, we designed a  mask which provides  

 phase shift to the R channel. This means that the R channel will perform in a similar 
fashion as the B channel responded to the  mask. Using the  mask, it was expected 
that the B channel should provide acceptable contrast images for  region. However, 
since  depends on the wavelength (Eq. (40)), the R channel now exhibits   higher values 
of , thus providing information for a higher value of the DOF. The MTF curves shown 
in  Fig. 24, exhibit the response of the  mask that demonstrates an increased DOF as 
compared to that obtainable with a  mask. Note that the B channel response for  
using the  mask is similar to that of the R channel response for  using the  
mask. 

It is instructive to examine the contrast level of a single spatial frequency (say ) for 

different  values. A comparison for three cases is presented in Fig. 25:  mask (left) 
and  mask (right), both with solid lines. The dashed lines in both plots present the 
curves for clear aperture. The  mask exhibits larger DOF than that of the  mask 
and provides wider separation of the three-color channels. This enhancement effect is 
crucial for the post processing stage as described in the next sections. It is instructive to 
provide the actual distances corresponding to the values used in Fig. 25. For instance, 
for an iPhone 6 rear camera (having a 1.8mm aperture), focused at a nominal distance 
located 1.4m away, the  values range from  to 8, corresponding respectively to 
object locations extending from infinity up to 50cm from the camera. 
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Fig. 24: Comparison between the MTF of aperture equipped with a phase mask of 
(top  – solid lines) and mask (bottom – solid lines), for  (left to right). 

The dashed lines in all the plots present the curves for clear aperture case. 

 

 

Fig. 25: Comparison between simulated MTFs of a single spatial frequency ( ) as a 
function of OOF factor . Solid line: aperture equipped with a phase mask of (left) 
and  (right). The dashed lines in both plots presents the curves for clear aperture. 

 

3.3 Mask optimization 
An increased DOF was achieved by using a binary phase mask with a single step ring of 

, as shown in [27], while the  mask, described in the previous section, offered 
superior extension of the DOF, as demonstrated in [36].  The purpose of those masks was 
to increase the response diversity of the three main color channels R, G and B, such that 
each will perform best for different depth regions. Finally, the three channels jointly 
provide an extended DOF.  
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Although this phase mask performed well in case of image deblurring, it was designed to 
be used in conjunction with a corrected lens and a specific range of ’s.  In this section, 
we investigate a new mask consisting of three step rings, each with a unique depth, thus 
a different phase, that provides more flexibility in designing an imaging system that can 
also be used in conjunction with an uncorrected lens.  

As shown in [36], the chromatic diversity is the key element in finding the correct blurring 
model in a blind deblurring process; it also  provides valuable information for the depth 
restoration process. The diversity between objects from different depths will be 
determined by the differences between the corresponding blurring models as expressed 
by the corresponding PSF’s of the respective chromatic channels. A well designed 
chromatic separation optical system, where each color channel will have a Diffraction 
Limited (DLIM) performance for a different focal distance , will require a special lens 
design [38] and even then, for small scale cameras (as for smartphones), the lens 
performance must be reduced to meet the small form factor requirements.   

The search for mask parameters (rings radii and their respective phase) is based on an 
analytical calculation of the derivative of the PSF with respect to . A similar calculation 
was also presented in [9] to optimize a cubic phase mask for a single wavelength such 
that the PSF will remain constant within the required DOF. For our purpose, we need to 
modify the search criteria such that the diversity between color channels will be 
maximized, while at same time maintaining the contrast above a minimum level.  

Using the PSF expression from Eq. (12), the generalized PSF  (Eq. (12)) can be 

expressed as a function of the generalized pupil  (Eq. (21)): 

   (43) 

where  and  are the Fourier transform and the conjugate 

Fourier transform of  respectively;  and are the image plane and 
pupil plane coordinates respectively.  

Using the chain rule, the PSF derivative with respect to  is: 

  (44) 

As does not depend on the Fourier transform integration variables, one can interchange 
the order of Fourier transform with the derivative, such that: 
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   (45) 

where and R is the pupil radius. Using Eq. (45), the PSF derivative form 

Eq. (44) is now reduced to: 

   (46) 

Next, we define the PSF Derivative Energy (PSFDE)  as the square of the 

derivative 2'nd norm by: 

  (47) 

where  is the phase mask parameters (radii and phases) and  are the sensor plane 

coordinates. The PSFDE quantifies the PSF changes as a function of , but only for a 
single wavelength. For color images, we define the “Joint PSFDE”, or , that 

quantifies the PSF changes for all three-color channels: 

   (48) 

For a DLIM system  will be zero at focus  (Y=0), but will exhibit high peaks 

around  (Fig. 26 – left) For an uncorrected lens with spherical aberrations (Fig. 26 
– right), the PSF will deteriorate and thus the difference between high and low values of 

 will be much smaller in comparison to DLIM systems.  

For best coverage for a specific  range,  should be as high as possible for 

all  values, thus insuring high diversity while keeping at least one channel sharp 
enough for the deblurring process.  

We can thus define a merit function M: 

   (49) 

The merit function provides the maximum value of the minimal over 

the range of . For a DLIM system is zero, since the minimal value of 

is zero for ;  for an uncorrected lens,  will still be low (Fig. 26).   
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Fig. 26: The Joint PSFDE: DLIM system (left); Lens with spherical aberrations (right). 
The Zernike coefficient 𝑍, was set to 1.8 (see Table 1) 

 

As mentioned at the beginning of this section, we seek a perfectly designed lens that 
provides perfect DLIM performance for each color channel separately, while each color 
is focused at a different distance. This will be used as a test case. As shown in  Fig. 27(a) 
such theoretical lens will provide proper color separation within the  range, which was 
set to . Our phase mask performance, shown in Fig. 27(b), produces similar 

result as that of a perfectly designed lens (theoretical lens) with chromatic aberration only.  
When using an uncorrected lens with spherical aberrations, equivalent results have been 
achieved using different mask parameters as shown in Fig. 27(c).  

 

 
    (a)                                           (b)        (c)   

Fig. 27: The Joint PSFDE: (a) DLIM with chromatic aberrations; (b) optimized mask 
for a corrected lens; (c) optimized mask for uncorrected lens. 

 

For the DLIM corrected lens the mask radii vector was set to  

with respect to the maximal aperture radius, and with phase value of 
 (each value refers to the phase of the ring between adjacent 

radii values. For the DLIM uncorrected lens, the mask radii vector was set to be the same 
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as for the corrected lens with a phase-mask, but the phase values changed to 
. A 3D illustration of the second mask is presented in Fig. 28. 

The phase mask parameters search was limited to a maximum phase shift of 5π radians 
such that the relative phase between wavelength inside the visible range (Eq. (39)) will 
not exceed 1.2π. Since the sensor color filters transfer colors near the peak wavelength, 
this phase constraint insures that the PSF will not change significantly between the three 
main color channels.  

In practice, to make the fabrication process simpler and more reliable, a two-ring 
limitation was set in the searching process. An optimized three-rings mask surpass the 
two-ring mask only by a small margin. Such a design may be considered in the future for 
other optical system setups. 

 

         

Fig. 28: 3D mask illustration. The phase difference was created by etched sections on a 
glass surface. The right image shows a cross-section of the mask. 

 

The search for the mask parameters can be computationally exhausting since for each 
mask one needs to calculate the derivative (which involves a Fourier transform operator) 
for each color and for each within the range. This search can be simplified by 
analytical calculations as described in detail in Appendix A. 

 

3.4 Spherical aberration compensation mask 
In the previous section, a method for mask optimization was presented. When facing an 
imaging system using an uncorrected lens, this procedure provides a mask exhibiting 
similar results to the mask that has been used when dealing with DLIM lens.  

( )[ ]0,8.2,14,12.6 radf =

Y



58 
 

One may consider designing a mask for an uncorrected lens as the combination of two 
masks in tandem; the first mask has the task of reducing the lens aberrations and the 
second one creates the necessary color separation. This observation led to another 
application of the phase mask as a way to correct aberration. This can also eventually 
reduce the complexity, thickness and even cost of conventional lens manufacturing. 

The search for the optimal mask for reducing aberration is based on the same concepts 
presented in the previous section. The Joint PSFDE for DLIM lens, as shown in Fig. 
27(a), exhibits zero response for (in focus) and high response at about . We 
define a new merit function: 

   (50) 

This merit function finds the best mask that will provide high Joint PSFDE for one 
within the range, while ensuring that the Joint PSFDE value for  will remain low. 
The MTF for an in-focus system suffering from spherical aberration is presented in Fig. 
29. The dash line in both plots shows the DLIM response. Imaging with a phase mask in 
the lens assembly exhibits near DLIM performance, while the uncorrected system 
exhibits poor results. The Zernike coefficient  (Table 1) was set to 1.8 (the estimated 
value for the spherical aberration found in one of our experimental lens). 

 

   

Fig. 29: MTF for in-focus system with aberration (left: solid line) and same system 
equipped with a correcting phase mask (right: solid line). The dash lines in both plots 

show the DLIM response. 
 

To demonstrate the effect of the mask on an image, a simulation study of a test image 
using a DLIM lens, uncorrected lens, and uncorrected lens equipped with a phase mask, 
was carried. The results presented in Fig. 30 confirm the mask ability to compensate for 
optical aberrations. 
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Fig. 30: Imaging with DLIM lens (left – PSNR 26.3dB), with uncorrected lens (center – 
PSNR 23.7dB) and with a phase mask (right – PSNR 25.4dB). 

 

3.5 Mask fabrication  
Most of the imaging system designs used in this work require a diffractive optical element 
to manipulate the wave-front of the field in the exit pupil. The process was carried at Tel-
Aviv University Nano Center using Lithography techniques and chemical wet etching. 

This fabrication technique is very similar to the technology used to produce VLSI circuits 
[146]. In this method, to fabricate N rings phase mask one required N+1 binary 
lithography masks. Each binary mask defines the regions of the substrate that will be 
exposed during the Photo-Lithography, i.e. each pixel in the mask is either transparent or 
opaque.  

 After developing the first layer, the photoresist is removed to expose the designated 
areas. Hydrofluoric acid is then used to etch the glass such that a depth difference is 
created between the exposed area and the rest of the substrate, and thus, creating the 
desired phase difference. This process is repeated for each binary mask until the desired 
etched depth for the entire area is achieved.  

A 130µm thick Soda Lime glass substrate was used for fabrication. This thin glass 
allowed incorporating the phase mask with a commercial lens with minimal change to the 
original lens design. 

 

3.6 Chapter summary 
In this section the use of a specially designed phase mask was presented. This simple 
optical element can be easily fabricated, and its small dimensions allow implementation 
in existing commercial cameras. The search for the optimized mask parameters has 
proven to be a powerful tool in the attempt of designing the optical stage of our phase 
coded computational camera. In the next chapters, the valuable information exhibited by 
the output image, will be exploited for image deblurring and depth estimation. 
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4. Sparse model for image deblurring and depth estimation 
In this chapter a method for extended depth of field imaging with depth estimation 
capabilities is presented [36], [47]. This method is based on image acquisition through a 
thin RGB binary phase plate, which was presented in the previous chapter, followed by 
fast automatic computational post-processing which utilized sparse representability of 
natural images. By placing a wavelength-dependent optical mask inside the pupil of a 
conventional camera lens, one acquires a unique response for each of the three main color 
channels, which adds valuable information that allows blind reconstruction of blurred 
images. Simulation as well as capture of real-life scene show how acquiring a one-shot 
image focused at a single plane, enables generating a de-blurred scene over an extended 
range in space, in addition to producing a depth estimation map. This process was also 
implemented on an FPGA module [147] which enabled real-time performance.  

 

4.1 Outline 
This chapter organized as follows: 

Section 4.2 is dedicated to introducing the foundation for the non-blind procedure which 
is used in Section 4.3 for spatially varying blind deblurring. Section 4.4 presents real-life 
experimental results acquired with a prototype camera equipped with our RGB phase 
mask. An FPGA-based real-time implementation of EDOF image reconstruction is 
demonstrated in Section 4.5. Section 4.6 is dedicated to describing the depth evaluation 
method which adds refocusing abilities to our system. Finally, Section 4.7 summarizes 
the chapter. 

 

4.2 Sparse model for non-blind image deblurring 

4.2.1 Image deblurring using a sparse synthesis pair 
Sparse representation has proven to be a strong prior for non-blind image deblurring 
(refer, e.g., to [87], [88], [92]–[94]) where the blurring kernel is known, as well as for 
blind ones [89], [90]. The signal  is said to admit a sparse representation (or, more 
accurately, an approximation) over a dictionary  if one can find a vector  with 
only a few non-zero coefficients, such that . The sparse representation pursuit 
problem can be cast as the  pseudo-norm minimization, 

   (51) 

where counts the number of non-zeros in the vector  with the sparsity limited to S.  

While the sparse representation pursuit (Eq. (51)) is computationally intractable, it can be 
efficiently approximated by several known techniques such as OMP [114]–[116]. The 
dictionary  can be constructed axiomatically based on image transforms such as DCT 
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or wavelet, or learned from a training set sampled from representative images. Here, we 
adopt the latter approach to construct a structured dictionary for encoding overlapping 

patches represented as 64-dimensional vectors.  

Assuming we have a sharp image x that has been blurred by a known kernel h, the blurred 
image y can be described as: 

   (52) 

where  is additive Gaussian noise and ‘ ’ denotes the convolution operator. In the 
scope of this work we assumed that . Consider a patch from the blurred image 

represented in a raster scan order as a column vector , and a blurred dictionary 

 composed of N 64-dimensional atoms generated from the sharp atoms in 

dictionary , such that , where the matrix  represents a 
blurring operator corresponding to the blurring kernel h. 

Using OMP the sharp patch  can be restored by greedily solving the optimization 
problem 

  , (53) 

where  is the is the sparse vector corresponding to the i-th patch . Solution of 

(53) produces the sparse code coefficients  of the blurred patch  as a linear 

combination of atoms from the blurred dictionary . The sharp patch  can be 

recovered by . This process implies that for all i, . 

To reduce transition artifacts, patches are taken from the blurred image with a step size 
of one pixel to produce maximum overlap.  

 

4.2.2 Dictionary selection 
Blurring the dictionary atoms directly in the non-blind image deblurring setting asserts 
that for all i,  is a good estimation of the sharp patch . The relation between the 
clean and the blurred dictionaries allows restoring the original image from the blurry one. 
However, in real settings, only the blurry patch  is known and there is no guarantee 

that the coefficients vector  will yield a good approximation the sharp patch .  

The dictionary learning process is the key element in the restoration process and many 
studies have focused on different learning processes [127], [148]–[150].Our approach for 
this problem is based on selecting a set of sampled data from training images [95] and 
using k-SVD [127] taking the imaging optics into account. The blur kernel transfers in 

8 8´

y h x h= * +

h *
1h <

64
i Îy R

64 N
b

´ÎD R
64 N

s
´ÎD R b s=D HD 64 64´ÎH R

64
i Îx R

2

2 0
arg min       s.t. 

i
i i s i i S= - <

z
z y HD z z

N
i Îz R iy

iz iy

bD
64

i Îx R

i s i»x D z i s i b i» »y HD z D z

s iD z is

iy

iz ix



62 
 

most cases only the low frequency in a specific patch while suppressing most of the high 
frequencies as shown in Fig. 31. By choosing only the low frequency patches for our 
dictionary, the corresponding blurred patches will still resemble the sharp ones and there 
will be a much better chance of choosing the correct sparse code coefficients. 

The selection process is employed as follows: (1) a temporary dictionary is selected 
randomly from a set of sampled images; (2) the dictionary is learned to fit a sampled data 
using the k-SVD process; (3) only a few low frequency edges-like atoms are selected 
from the temporary dictionary; (4) the process is repeated until the required number of 
atoms is selected. For fast implementation of the OMP process [87], [100] each atom was 
normalized. Our results show that even if one uses a fixed small dictionary (128 atoms) 
it works as well as a large one and can also be used for other arbitrary natural scenes 
without repeating the training process again each time.  

The restoration process using random patches and low-frequency patches is shown in Fig. 
32. The random dictionary is composed of patches which contain high frequency noise 
and, as a result, the restoration process enhances the noise in the image as shown in Fig. 
32. Our specially selected dictionary (which is composed out of low frequencies patches) 
restored the blur image without enhancing the noise and with fewer artifacts. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 31: Dictionaries comparison: (a)-(b) – randomly selected dictionary before and 
after imaging; our “low frequency” dictionary before (c) and after (d) imaging. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 Fig. 32: Non-blind restoration example: (a) – original image, (b) blurred image, (c) 
restoration using random patches, (d) – restoration using our dictionary. 



63 
 

4.2.3 RGB dictionary 
Assuming approximately constant depth and, hence, the same known   for all pixels in 
the vicinity of a spatial location  in the sensor plane, the image formation model can be 
described as the following convolution:  

   (54) 

where , i=R,G,B, denote the color channels of the ideal image,  denote the 

corresponding  OOF image in the sensor plane, is the color depended PSF kernel and 

is the additive white Gaussian noise at least at reasonable illumination intensities. In 
vector notation combining the three channels, the expression simplifies to 

 . (55) 

Similar to the gray level dictionary the was presented in the previous section, the RGB 
dictionary is composed from sampled color images using an  patch size (  for 
each color channel). Each atom in the RGB sharp dictionary is formed by 
concatenating the R, G and B vectors.  Using the previous formulation, a sparse vector 

corresponding to a blurred patch  is estimated by the following optimization 
problem: 

   (56) 

where the matrix represents a blurring operator corresponding to the 

blurring kernel . 

Unlike the gray level case, color patches have three bias components (the signal mean 
value, or DC), each one is responsible for the way the color appears and therefor it’s value 
must be reserved. However, the OMP process does not guarantee that the restored patch 
will maintain the same bias as the original one. Expending the dictionary by adding 
similar atoms but with different biases can reduce the bias restoration error, but this will 
increase computational efforts. In [96] the authors address this issue by defining a new 
inner product of two column vectors to use in the OMP step as: 

 , (57) 

where the first term represents the classic inner product and the second one represents the 
inner product of the mean color vector  which contain the mean value of each 
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color channel. The parameter  controls the importance of the bias correction. This 
essentially force selecting atoms with the same color bias.  

This scheme may be suitable for denoising where the bias may change drastically due to 
severe noise, but in optical deblurring the bias usually remains the same since the ‘DC’ 
value is not affected by the blurring process. In addition, the suggested scheme will 
encourage bias restoration instead of texture restoration. This may cause a problem when 
using our phase mask; for instance, when the Red channel exhibits high contrast level, 
but the input has low bias level while the Blue channel exhibits low contrast with high 
bias input. This scenario will encourage atoms selection based on bias and not on details 
which not only reduce the restoration performance but more importantly, will limits our 
ability to distinguish between atoms from one focus scenario to another, which is the basis 
for our blind restoration process (as will be presented in the next section). 

For our deblurring purposes, the mean value was removed from each color separately and 
the entire atom was normalized afterwards. At the representation stage of the blurred 
image (Eq. (53)) the DC information was removed from each color channel patch to 
insure that only the texture is being represented without the influence of strong DC data. 
The removed DC is added to the recovered patch after it has been restored using the 
dictionary switching method. This allows us to restore the correct bias using a relatively 
small dictionary (for our simulations, 128 atoms were sufficient). An illustration of a 
colored dictionary we used is presented in Fig. 33. Notice that the colors appearing in Fig. 
33 do not reflect the actual bias (since it was zero); random bias values were added for 
illustration purposes.  

 

 

Fig. 33: Example of a color dictionary. 

 

4.2.4 Non-blind color image deblurring using a phase mask 
Before attempting to restore a color image blindly, it is instructive to assess the 
performance and limitations of such restoration for a non-blind case. The blurring kernel 
depends on the optical cut-off frequency  (Eq. (16)) as well as the out-of-focus 
parameter . As described in Section 3, for the in-focus condition the phase mask 
deteriorates the image in comparison to the clear aperture with no mask, as easily 
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observed in Fig. 25. Therefore, one must show that the blurred image captured with the 
phase mask can be restored correctly when the image is in-focus.  

Fig. 34 (top row) shows the restoration results for in-focus images taking with and without 
phase mask. The results show that even though the blurry input image taken with the 
phase mask is worse than the blurry input taken without the mask, the resulting restored 
images in both cases is sharp. 

The advantage of the phase mask comes into play when one deals with a blurry image 
due to a strong out-of-focus factor. Fig. 34 (bottom row) shows the results of the 
restoration process for such case. Using the phase mask in the imaging process creates a 
better input for the restoration stage with much more information to work. The simulation 
results in Fig. 34 clearly show that for a strong out-of-focus condition image restoration 
will not work unless one uses a phase mask.  

 

 
In-focus without mask 

PSNR – 26.82dB 

 
Restored 

PSNR – 31.97dB 

 
In-focus with mask 
PSNR – 23.11dB 

 
Restored 

PSNR – 29.91dB 

 
 OOF without mask 

PSNR – 19.92dB 

 
Restored  

PSNR – 24.02dB 

 
OOF with mask 

PSNR – 20.91dB 

 
Restored 

PSNR – 26.97dB 
(a) (b) (c) (d) 

Fig. 34: Restoration results for in-focus blurring and restoration (top row) and strong 
OOF condition (bottom row), with clear aperture (a-b) and with phase mask (c-d) 

 

4.3 Blind image deblurring using a phase mask  

4.3.1 Blind image deblurring model via stacked dictionary  
In the practical case of blind image deblurring, the blur kernel is unknown; moreover, it 
varies with the object depth location. Many studies dealt with this problem, with limited 
success. For instance, using different iterative processes [89], [90], [92]–[94], [151]–
[153], one tries to estimate the blurring kernel so that image restoration can be thereafter 
achieved. Reconstruction processes usually require high computational complexity, 
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which limits their use for many real-time applications. Our approach based on using an 
optical phase mask allows restoring the image without needing any iterative process to 
estimate the blurring kernel. Furthermore, most of blind deblurring algorithms are 
constructed with the explicit assumption that the input image is localized at a single depth 
position, such that the blur can be described as a convolution with a spatially constant 
kernel. In real life scenes, however, the objects are at different distances, and the blur 
changes abruptly when crossing the object boundaries. Many natural scenes can be 
approximated by a “2.5D world” assumption asserting that a scene comprises a plurality 
of objects at different depths, yet each object is approximately planar and perpendicular 
to the optical axis.  Under this assumption, the blur can be modeled as the convolution 
with a piece-wise constant blur kernel defined by the defocus parameter  of that 
particular object. We also assume that the blurring kernel is affected only by the defocus 
parameter (  to ), ignoring other sources of blur, e.g., due to camera or scene 
motion.  

To cover most DOF, we propose to construct k sub-dictionaries using different blurring 
kernels for different defocus parameters and then concatenate them into a single “Multi-
Focus Dictionary” : 

   (58) 

For this application, we used  and . Assuming that a step of  is 
discriminative enough, one thus needs to construct nine sub-dictionaries. 

Similar to the non-blind search in Eq. (56), the blind problem can be address as finding 
the sparse vector representation using the concatenate dictionary : 

   (59) 

The reconstruction of the sharp vector preformed using a k-times concatenated 
version of the sharp dictionary as . This process is based on a strong 

assumption that elements from the correct sub-dictionary will be selected in the pursuit 
process but in general, there is no way to ensure that this will be the case.   

The OMP process chooses elements from the dictionary that best match the input patch, 
based on largest inner product, treating each RGB input as a single input vector. For a 
specific value, when using a corrected lens with clear aperture, the PSF kernel is very 
similar for all color channel. Alternatively, when using our RGB mask, the PSF kernel is 
different for each color channel such that for an input patch (or vector) the contrast level 
varies strongly for each color channel. The response is unique for each OOF scenario and 
therefore the blurred input vector will most likely associate with blurred vectors from that 
experience the same blurring process. The diversity exhibited by the color information 
when using a phase mask allows applying the non-blind deblurring technique described 
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in the previous section directly. The advantage of the DC removal process from the input 
patches (which was also discussed in the previous section) is now clear as strong bias in 
one color channel will not affect the atoms selection process. 

Comparing our algorithm with an open access state-of-art algorithm, such as the one 
provided by Krishnan et al. [151], our process produced better results when applied to 
natural images out of the Kodak Dataset [154]. We also run the process on texture images 
from the Colored Brodatz Texture Database [155] and observed similar performance, 
hinting that the MFD dictionary will work on almost any natural scene. The example in 
Fig. 35 shows how an OOF image taken with a conventional clear aperture [Fig. 35(b)] 
cannot be restored using Krishnan algorithm [151] [Fig. 35(c)]. When using a phase mask 
the image is visually better [Fig. 35(d)] than that of a clear pupil, but the restoration 
process applying Krishnan [151] still introduces strong artifacts [Fig. 35(e)]. However, 
applying our process on the image taken with the phase mask one gets an improved sharp 
image [Fig. 35(f)]. 

 

 
Fig. 35: Example of simulated image blurring and restoration. (a) Original image from 

the KODAK dataset ; (b) Out of focus with clear aperture (PSNR – 15.16dB); (c) 
Deblurring of (b) using Krishnan [151] (PSNR – 14.82dB); (d) Out of focus with phase 

mask (PSNR – 16.37dB); (e) Deblurring of (d) using Krishnan [151] (PSNR – 19.22dB); 
(f) Deblurring of (d) using our new process (PSNR – 23.04dB). 

 

4.3.2 Spatially varying blind blurring 
As indicated in the previous section, for natural depth scenes one cannot assume that the 
image is blurred by a single blurring kernel. Our process analyzes small patches and not 
the whole image; therefore, the restoration process is applied to every region inside the 
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image frame independent on the restoration process of other regions in the frame. This 
feature is what allows implementing our process directly in one step on images with 
spatially varying blur. 

To demonstrate the process let us assume a 2.5D scene with four objects, each located at 
a different distance from the camera as shown in Fig. 36. The top image shows the 
simulation of capturing a scene using a conventional camera focused on the background. 
As expected, other objects in the scene are blurred according to their distance from the 
focus point. The bottom image presents the result obtained with an imaging system 
comprising a phase mask followed by our post process blind restoration scheme. One can 
notice that all objects were restored without noticeable artifacts. Although there is a strong 
red content in the front objects and blue one in the background objects, a reversed scenario 
has also been examined producing similar results, thus showing the robustness of our 
system.   

To reduce running time, we examined the minimal number of sub-dictionaries that will 
still provide good results in comparison to the results shown in Fig. 36.  To cover the full 
range of OOF factors inside the scene one will need to use at least three sub-dictionaries 
(corresponding to ) without losing any noticeable quality.  
 

 

Fig. 36: Simulated 2.5D scene with four objects each located at a different distance 
from the camera corresponding to  (background buildings) to  (the woman 

on the right) – Conventional imaging (top). Imaging with our system using a phase 
mask and blind post-processing (bottom). 

0,4,8Y =

0Y = 8Y =
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4.4 Experimental stage  

4.4.1 Demosaicing implementation 
In the previous sections, the sparse representation (Eq. (59)) was based on an imaging 
model (Eq. (55)) which assumes the full RGB information is available from the blurred 
image i.e. the image was demosaiced  prior to the deblurring process. This assumption 
holds, since camera manufacturers usually provide the demosaiced version of the image. 
However, the proprietary methods used for producing those demosaiced imaged are not 
available. Since the deblurring performance depends on the imaging model, adding a 
hidden black box to the model might damage the restoration quality. Moreover, several 
studies [96] had successfully implemented the demosaicing stage as part of the 
representation process, and thus enable faster process which also required less memory. 

The color information is sampled using a color filter array (CFA) where each pixel 
captures information of only one of the main color channels (RGB).  Combing the three 
channels using vector notation and adding the CFA model, the raw mosaiced image 
can be expressed as 

 ,  (60) 

where is the three-color ideal sampled image and B is the Bayer sampling matrix such 
that each pixel in contains information of only one of the three-color channels. Note that 
the action of B is not shift-invariant. 

Implementing this model within the sparse representation scheme (59), produce the 
following single-step demosaicing-deblurring optimization 

 .  (61) 

For a 64-dimension input vector  (a  mosaiced patch),  is the  matrix 

performing the action of CFA on the 192-dimension atoms from the dictionary . 

Notice that the restoration step remains the same as  perform both the 

deblurring and the demosaicing process.  

As mentioned in the beginning of this chapter, patches are taken from the blurred image 
with a step size of one pixel to reduce transition artifacts. In typical signal with a   
CFA arrangement, B is only invariant to even shifts. To produce maximal overlap in the 
model, the input raw image needs to be divided into four different images corresponding 
to 0- and 1-pixel shifts along each axis. Assuming the CFA is arranged in the ‘rggb’ 
format, the other three will be arranged as ‘gbrg’, ‘grgb’ and ‘bggr’ respectively. After 
each image is deblurred and demosaiced separately using two-pixel step size, the four 
images are combined into a fully overlapping image. Alternately, one can also use only 
the first image while reducing a bit the smoothness of the transition between patches.  
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4.4.2 Setup and results 
A proof-of-concept experimental system aiming to test the approach, described in this 
chapter, was carried out. The first-generation system consisted of a CCD camera (Allied 
Vision G-146) with a pixel size of 4.65µm and a 16mm lens (Computar M1614-MP2) into 
which the phase mask was inserted. The mask was manufactured on a 1.5mm thick Soda-
Lime substrate onto which a single ring, 4π phase pattern was etched in the center to 
provide the necessary phase shift. A view of the scene setup, onto which we marked the 
value corresponding to the object position is shown in Fig. 37. 

A comparison between a conventional camera and our method is presented in Fig. 38.  
Both images were captured in the exact same lighting conditions and exposure time. The 
left image in Fig. 38 shows the captured scene with a conventional lens (clear aperture) 
that was focused on the background poster. The right image in Fig. 38 shows the results 
of capturing the same scene using an aperture with a phase mask (see Fig. 37) followed 
by our post processing algorithm. One can notice that using the proposed method one 
restores an image with all objects in focus. The zoomed sections in Fig. 38 allow the 
viewer to observe the restored image quantitatively with the use of the resolution target 
object. Notice that the conventional captured Rosetta image exhibits low contrast or even 
contrast reversal, as opposed to the sharp restoration results one gets using our system. 

 

 

Fig. 37: Experimental set-up: Left - Scene line-up including the relative OOF factor for 
each plane. Right - View of camera and mask insertion in the lens assembly. 

 

The computational run time was about 2 minutes for a 1.3MP image using a MATLAB 
implementation running on an Intel i7-2620M laptop with 8GB of RAM. In [156], a fixed-
complexity alternative to iterative pursuit methods was presented. It achieved real-time 
performance on various image processing applications and inverse problems. An FPGA 



71 
 

prototype applying a similar methodology to our present imaging system is presented in 
the next section. 

 

 

Fig. 38: Experimental results – Imaging with a conventional clear aperture (left) and 
imaging with a phase mask and our post processing restoration (right). 

 

Increasing camera resolution while reducing pixel size poses several challenges 
concerning noise and reduced DOF. In the second version of our imaging system a CMOS 
sensor with a 1.67µm pixel pitch was used. A pixel pitch about three times smaller than 
our initial prototype allowed increasing the resolution from 1.4MP to 10.5MP. The mask 
thickness was also reduced to 130µm allowing a simpler assembly inside a 16mm lens 
(LM16JCM-V by Kowa). The lens was chosen due to its unique two-parts design, 
allowing the mask insertion without the need to disassemble the lens (Fig. 39). We also 
used an optimized two-rings mask, designed by the optimization process detailed in 
Section 3.3. 

As presented in Fig. 40, using our system (central column), we achieved larger DOF than 
that obtained with a conventional camera with the same aperture size (left column). When 
comparing to a conventional camera with a higher F# (right column) our system still 
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achieved a higher DOF while reducing the noise to a minimum. Both demosaicing as well 
as noise reduction were performed alongside the DOF restoration process.  

 

   

Fig. 39: The 130 µm mask (left) and the ‘Kowa LM16JCM-V’ two-part 16mm lens. 

 

 

Fig. 40: DOF vs. Noise – left to right: Clear aperture with F#=7; Our system with 
F#=7; Clear aperture with F#=16; notice the sharpness and noise reduction in the 

center column. 
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4.5 FPGA implementation for real-time EDOF system 
In the previous section, a method for EDOF imaging was presented. Using a phase mask, 
the captured image exhibits a unique color response which was then use for blind 
restoration using post-processing. The computational stage was based on a non-blind 
method that handle several blurring kernels within a single image, while the purely 
computational methods for blind image restoration handles only one blurring kernel at a 
time. Even though our restoration process offered a competitive restoration time to other 
methods, it has not reached its full potential as a real-time process.  

In this section, a proof-of-concept end-to-end system for fast computational EDOF 
imaging. This system is based on a fast, non-iterative reconstruction algorithm, operating 
with constant latency in fixed-point arithmetic’s and achieving real-time performance in 
a prototype FPGA implementation. The output of the system, on simulated and real-life 
scenes, is qualitatively and quantitatively better than the result of clear-aperture imaging 
followed by state-of-the-art blind deblurring. 

 

4.5.1 Fast image reconstruction 
As was explained in Section 2.4.3, the pursuit problem (Eq. (61)) can be posed as a 
convex optimization problem by choosing an  regularization term which controlled by 
the parameter , resulting the following optimization problem: 

   (62) 

This problem can be solved using proximal algorithms such as the iterative shrinkage 
thresholding algorithm (ISTA) or its accelerated version (FISTA) [112] as detailed in 
Section 2.4.3. However, these iterative solvers typically require hundreds of iterations to 
converge, resulting in prohibitive complexity and unpredictable input-dependent latency, 
which is unacceptable in real-time applications. 

To overcome this limitation, we follow the approach advocated by [113], in which a small 
number, T, of ISTA iterations is unrolled into a feed-forward neural network that 
subsequently undergoes supervised training on typical inputs, as explained in the sequel. 

A pseudo-code of ISTA is given in Fig. 41, where , , and 

 is a two-sided shrinkage function with the threshold 

 applied element-wise. L denotes a scalar larger than the largest eigenvalue of 
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Inputs: 
Ø signal  , shrinkage threshold  and matrices   
Ø number of iterations T 

Output: 
Ø Approximation vector  such as  

Initialization: 
Ø Initial solution ; and  

Main iteration loop:  
Ø  

•    

•  

Ø End while 
Ø Set the solution to:  

Fig. 41: ISTA algorithm for blind image restoration  
 

As can be easily interpreted from the ISTA algorithm, the network comprises three types 
of layers: An initialization layer (denoted as I), which finds the representation of the input 
signal in the dictionary; several ( ) recurrent middle layers (M) performing the 
gradient step followed by element-wise shrinkage; and a final layer (F) which translates 
the resulting dictionary coefficients to the reconstructed signal. All these types of layers 
can be realized from the single multi-purpose calculator stage shown in Fig. 42 (right) 
that is amenable for hardware implementation. To get the "I" configuration, we set 

, ,  and . The ``M'' configuration layer is fed by the output of the 
previous calculator, and the matrix  is set to . The output is further fed to either 
another ``M'' layer or to the ``F'' layer. Finally, the ``F'' configuration of the calculator is 
a reduction into multiplication by the matrix . This is achieved by setting , and 

. 

Supervised training of the network is done by initializing the parameters as detailed 
above, and then adapting them using a stochastic gradient procedure minimizing the 
reconstruction error of the entire network. We use the following empirical loss:  

   (63) 

which for a large enough training set, , approximates the expected value of with 

respect to the distribution of the ground truth signals . Here,  denotes the output of 
the network, and the loss objective  minimized during the training process is the 
standard sum of squared differences, 
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  . (64) 

Similarly to [113], the output of the network and the derivatives of the loss with respect 
to the network parameters are calculated using the standard forward and back propagation 
approach. Practice shows that the training process allows to reduce the number of layers 
by about two orders of magnitude while achieving a comparable reconstruction quality. 

 

 

Fig. 42: Schematic description of the FPGA reconstruction system. The raw Bayer 
image from the sensor at 12bit/pixel is passed, through the HDMI input interface 
daughter board, to the Kintex 7 FPGA chip. The image is buffered in the external 
DRAM, from where it is fed as a stream of possibly overlapping 8x8 patches to the 

calculator pipeline comprising of up to eight stages (see detail on the right), 
implementing the neural network architecture. The output patches in 4:2:2 YCbCr 

format are average-pooled and buffered in raster order in the DRAM, from where the 
image is sent over to the HDMI output interface on the FPGA board.  The parameters 

of the calculator stages and other register values controlling the data flow are stored in 
the static memory on the chip, into which they are loaded by the host application on 

system startup. 

 

4.5.2 FPGA image reconstruction system 
To demonstrate that the proposed image reconstruction process is efficient and is 
amenable to hardware implementation, we built a prototype FPGA system. An FPGA is 
a programmable chip containing configurable logic blocks and routing resources, 
therefore offering a fair amount of flexibility previously only possible with software, 
along with a hardware-like computational speeds and reliability. While being distinct in 
many aspects from application-specific integrated chips (ASICs), modern FPGAs are the 
closest approximation of an ASIC one can get without incurring the costs of custom chip 
manufacturing. 

A schematic description of our system is depicted in Fig. 42 (left). We used the Xilinx 
Kintex 7 chip on the KC705 development board chosen mainly because of the availability 
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of video interfaces. As the output, we used the onboard HDMI output phy, while for the 
input, we added an external HDMI phy board connected to the main board through an 
FCM connector.  The input frames are received by the board through the HDMI interface 
in raw Bayer format, 16 bits per pixel with the most significant bytes packaged as the Y 
channel, and the least significant byte packaged as the 4:2:2 color channels. The input is 
relayed to Write Agent 0 on the FPGA chip that buffers it in the external dynamic 
memory. The content of the buffer is brought into the chip by Read Agent 0, which 
reorders the raster scan order into a stream of  patches with configurable amount of 
overlap. The patches are then fed into a configurable calculator pipeline implementing 
the reconstruction algorithm detailed in the previous section. The pipeline comprises 
three configurable stages, one of which is configured as the initial stage (I), another as a 
middle stage (M), and yet another as the final stage (F), yielding the flow structure of the 
form .  

The output of the calculator pipeline is produced in 4:2:2 YCbCr format comprising 64 
luma values at 16 bits per pixel, and additional  chroma values at 8 bits per 
pixel. The luma component undergoes gamma conversion implemented as a lookup table, 
reducing it to 8 bits per pixel. The patches are average-pooled (in case of overlap), 
reordered into raster scan order, and buffered into the dynamic memory by Write Agent 
1. Finally, Read Agent 1 conveys the content of the output buffer to HDMI output.  

A schematic block diagram of a calculator stage is depicted in Figure Fig. 42(right). 
Calculations are performed on vectors in fixed point arithmetic’s with 16 precision bits 
except the multiply-and-accumulate (MACC) block that uses 48-bit arithmetic’s 
internally. To keep a reasonable dynamic range, the data are scaled between various 
operations by scale factors that were carefully selected to minimize precision loss on a 
large set of patches from a collection of natural images. Compared to its floating-point 
counterpart, the fixed-point implementation produced negligible quality degradation in 
all our experiments. 

Each calculator performs element-wise soft thresholding and the multiplication of the 
input data by a matrix of size  (initial stage, converting the input 64-dimensional 
Bayer patch into a set of 192 coefficients),  (middle stage, performing operators 
on the coefficients), or  (final stage, converting the coefficients into a 4:2:2 
YCbCr patch with 64 luma dimensions and additional 64 chroma dimensions). This is 
implemented by using MACC blocks of respective sizes. The parameters of each 
calculator stage, including threshold values and matrix coefficients, are stored in a local 
static memory on the FPGA chip.  

Since MACC operations are fully pipelined, they require one clock cycle. The total 
number of clock cycles it takes a single patch to pass though the chain is given by 

, where  denotes the number of middle stages. There are 
additional overheads of approximately 100 cycles per network layer. Due to high resource 
utilization, we were able to use clock frequency of 125MHz only. This results in overall 

8 8´

( 2)I T M F® - ´ ®

32 32 64+ =

64 192´
192 192´

192 128´

64 192 ( 2)T+ ´ - ( 2)T -



77 
 

throughput of about 16,  frames per second without patch overlap and a 4-
layer network. 

 

4.5.3 Results 
In this experiment, we evaluated the performance of our algorithm on synthetic data from 
the KODAK dataset [154]. Each image was convolved with the same PSF corresponding 
to  and mosaiced to simulate the input to the system. The reconstruction neural 
network was trained using  patches taken from the KODAK training set. The 
networks with  layers and  were converted to fixed-point arithmetic’s as 
described in the previous section. 

The algorithm was compared to the OMP with a k=192 atom dictionary as described in 
Section 4.3. As a reference, we compared our algorithms to the blind deblurring algorithm 
from [151] following MATLAB default demosaicing algorithm. 

Image reconstruction quality in terms of average PSNR and SSIM [157], and execution 
times are presented in Table 2. It is evident that the highest PSNR is achieved by the 
FPGA implementation with , while restricting to  layers performed twice as 
fast yielding almost the same average PSNR and SSIM scores. Interestingly, the neural 
network achieves better reconstruction quality compared to the greedy OMP algorithm, 
which we attribute to the effect of supervised training. Both sparse prior-based algorithms 
outperform the blind deconvolution algorithm [151] by over 1 dB PSNR and about 17% 
higher SSIM. Comparing the execution times of the algorithms on a standard CPU shows 
that the OMP algorithm is about 30 times faster than [151], while the 4-layrs FPGA 
implementations was about 90 times faster than OMP about 2700 times faster than [151] 
with superior reconstruction quality. 

As indicated in the previous section, for natural depth scenes one cannot assume that the 
image is blurred by a single blurring kernel. Our reconstruction process analyzes small 
patches rather than the entire image; therefore, the process is applied to every region 
inside the image independently of the other regions, allowing our algorithm to treat the 
input as if it had a single blur kernel. 

To demonstrate the process, we used the same scene, presented in Fig. 38 (Section 4.3.2). 
A similar restoration process to the one described in Section 4.4 was carried except this 
time a patch stride of 2 pixels was set (instead of stride of 1 pixels – full overlap). A 
comparison of the OMP and FPGA results is presented in Fig. 43 top and bottom raw 
respectively.  Two zoom-in images are also presented to the right of each output image.  
The 2-stride setting reduced the running time by 4 compared to the 1-stride process but it 
also introduces some artifacts the are noticeable in the OMP output. The FPGA however, 
provided sharp demosaicing and deblurring results without noticeable artifacts. As 
mentioned earlier, the FPGA performed much faster than the OMP process which make 
it ideal for real-time applications. 
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 PSNR [dB] SSIM Time [sec] 

Raw input 22.63 0.59 - 

Blind deblurring [151] 24.57 0.68 501.17 

OMP  25.8 0.80 17.09 

FPGA (T=4) 25.86 0.81 0.19 

FPGA (T=8) 26.16 0.82 0.36 

 

Table 2: Comparison of average PSNR, SSIM and run time on KODAK images [154]. 
The values presented in the table are the averages over all test images in the KODAK 
dataset after they have been blurred using  and reconstructed with the different 

algorithms. All patch based algorithms were run using a patch stride of 2 pixels. 
Executing times were measured on an Intel Xeon CPU. Our fixed-point implementation 

was executed on a 100MHz Xilinx Kintex 7 FPGA. 

 

 

Fig. 43: Comparison between OMP (top row) and the FPGA implementation (bottom 
row). The right most columns show magnified fragments. 
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4.6 Depth estimation and image refocusing 

4.6.1 Scoring model for  labeling map 
The blind restoration process described in the previous section implies an application for 
depth map estimation associated with the most responsive sub-dictionary in each patch. 
This application is limited by the system ability to find the correct sub-dictionary for each 
patch. While minor errors in the dictionary selection process, such as selecting elements 
from adjacent dictionary, will have almost no effect on the deblurring process, it will 
however affect the depth estimation process. 

An obvious extension for this model will be adding a group sparsity prior [150], [158], 
[159] using a mix of  norm  to encourage sparse coefficients from the same group (i.e. 
same sub-dictionary) to be zero or nonzero simultaneously. Assuming a perfect group 
sparsity model is implemented on our system, the depth resolution will still be limited to 
the number of groups (sub-dictionaries) in our model. Increasing the number of groups 
will reduce the separation performance of the group model while demanding more 
computational efforts. 

To overcome the above limitation, we suggest an optimized phase mask (Section 3.3), 
and a new scoring model based on the OMP process to estimate a continuous depth map 
using a few sub-dictionaries in the process.  

Using a single blurred sub-dictionary  ( ) to represent a blurred patch 

 the sparse coefficient vector  is calculated using  a modified version of (61) as 

 .  (65) 

In other words, for each patch we calculate the sparsest vector  for each sub-dictionary 

separately such that the data term will be smaller than . In practice is also limited 

to 32 nonzero elements. Following the OMP process, each patch will be given a 
performance score for each sub-dictionary, comprising both the sparsity and the 
reconstruction error 

  , (66) 

where  is the scoring vector for each i-th patch. The first term  encourage 

sparsity while the second one represents the data fitting error.  

Next, using an average scoring of overlap patches we construct a three-dimensional 
normalized scoring map , where  and  are, respectively, the row and column 
dimensions of the input raw image y. Notice that the better the fit of a sub-dictionary to 
the data the lower the score  , and vice versa. A  label map can be estimated by 
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setting the  label for each pixel as the minimum value over the 3’rd dimension of the 
 matrix. However, the distinction between low and high scoring of a patch will be 

significant in rich texture areas but, for low texture areas (or smooth areas with noise), 
scoring will be low for all sub-dictionaries and thus, the label map will be noisy. 

To address this issue, we compute a Confidence Map ( ), such that high value 
relates not only to the fit scoring but also to our confidence level of choosing one sub-
dictionary over the others: 

   (67) 

where ,  and . The term  returns the 

averaging value of the image location over the 3'rd dimension of the  matrix. For 

rich texture patches, the  matrix mean value will be high, due to high scoring of the 
unfitted sub-dictionaries, which will set the confidence level of the sub-layers with higher 
than average scoring to zero, while setting high confidence level in the low scoring layers 
(which related to high fit level). For low texture patches, the  matrix mean value will 
be very low in all layers, thus setting the confidence level of those area to a minimum. 

Each layer in the  is filtered (using Gaussian kernel) to reduce data noise. After a final 
filtering stage using morphological operations, the discrete labels map was set as the 
max value over the 3'rd dimension of the  followed by morphological filtering stage to 
smooth the map and to fill the zero confidence area  with their nearest neighbor label (Fig. 
44 (b)). To produce a continuous map, one can use the  to perform a weighted averaging 
between the different layers to estimate the sub- ’s labeling as shown in Fig. 44(c). The 
image in Fig. 44(a) was captured using our two-rings phase mask design (as described in 
Section 3.3). 

 

 
Fig. 44: Depth map. (a) input image captured with our two-rings phase mask design; 

(b) ’s map segmentation; (c) continuous ’s map. 
 

The scoring method can be set as an integral part of the EDOF system, replacing the 
previous method of using all sub-dictionaries at once with the single dictionary step 
described in this section. This sparse presentation of this new method is more accurate 
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and thus, the restoration process produces better results. The overhead run time is about 
20% as the iterative process required k-times steps but each is calculated using a k-times 
smaller dictionary.  

 

4.6.2 Depth estimation results 
The new algorithm method which presented in the previous section produced ’s labels 
map which can be easily transformed into a metrical depth map using Eq. (20): 

   (68) 

where  is the nominal object position (focus point) and is the actual object position. 
To set the focus point we used a “clear phase mask”, which was simply no-rings phase 
mask, to compensate for mask thickness. After the focus point was set to the designated 
distance, the clear mask was replaced with the RGB mask.  An example of depth map 
segmentation is presented in Fig. 46. Pseudo-colors were used for identifying various 
distances, as clearly observed on the “floor” portion of the figure. 

 

 
Fig. 45: Depth segmentation visualization of a scene captured with our system. For 
illustration purposes, the colored map is fused onto the actual image (see Fig. 40). 
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To test the system performance and depth accuracy we captured a scene with a 
background poster and a textured surface. The distances from the camera to a few points 
over the table were manually measured and a full map was calculated using the camera 
properties. We used our process to estimate the distance from the camera and compared 
the results with the actual, manually measured distance. The image shown in Fig. 46 
shows the depth estimation obtained with our approach in comparison to the measured 
depth of the scene. For a discrete depth map, one can detect depth over a range of 60cm 
to 150cm with a 4cm error. The continuous map can reduce the estimation error by at 
least half. 

 

 
Fig. 46: Depth estimation comparison to an actual depth measurement results. 

 

4.6.3 Image refocusing 
Image refocusing became one of the most interesting application today in the competitive 
world of smartphones cameras. Our system provides this ability by utilizing both the al-
in-focus image output and depth map estimation. Changing the focus point is done by 
setting the designated distance as the new focus point and gradually blurring adjacent 
depth segments while increasing the blurring effect we move away from the focus point. 
To create a DLSR-like effect with a shallow DOF we can increase the blurring effect by 
choosing gaussian kernel with higher variance. This effect is demonstrated in Fig. 47 as 
the focus point changed from the foreground Fig. 47(a), mid-field Fig. 47(b) and 
background Fig. 47(c).   
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Fig. 47: Imaged refocusing: using both depth map and all-in-focus image one can 
produce a DSLR like image with shallowed DOF. Focus point can be changed 

computationally to the foreground (a) center field (b) and background (c). 
 

4.7 Chapter summary 
In this section, we have presented the foundation for extended depth-of field system, 
based on a modified conventional optical imaging system equipped with a special thin 
binary phase mask, followed by an electronic post-processing stage. The phase-coded 
aperture computational EDOF imaging system aims at solving one of the biggest 
challenges in today's miniature digital cameras, namely, acquisition of images with both 
high spatial resolution and large depth of field in demanding lighting conditions. The 
processing is based on simple dictionary based image deblurring algorithm. Our method 
was tested successfully on real life natural depth scenes with no need of prior knowledge 
about the scene composition or user intervention. The experimental results provide added 
validity of our method.  

Our proposed solution can be easily incorporated into existing imaging systems since it 
requires the addition of a thin mask (which can eventually be etched or fabricated onto 
one of the existing optical surfaces), and a simple real-time hardware computational unit, 
which was demonstrated in an FPGA prototype. As we demonstrated through extensive 
experiments, our system outperforms existing techniques for post processing an image 
taken by a standard camera.  

In the last part of this chapter, a method for estimating continuous metrical depth map 
from a single image capture with our phase mask camera, was introduced. The scoring 
process used in this method produce accurate depth map which can also be used for 
improving the deblurring procedure. Integration between all-in-focus and depth map 
provide artistic, yet highly commercial, refocusing abilities which allow changing the 
focus point post facto as well as emulating a DSLR like shallow DOF.   

The next chapter presents a neural network based method which not only improves the 
depth estimation accuracy, but also speeds up the process by three orders of magnitude. 
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5. Depth Estimation from a Single Image using Deep Learned 
Phase Coded Mask 

Depth estimation from a single image is a well-known challenge in computer vision. With 
the advent of deep learning, several approaches for monocular depth estimation have been 
proposed, all of which have inherent limitations due to the scarce depth cues that exist in 
a single image. Moreover, these methods are very demanding computationally, which 
makes them inadequate for systems with limited processing power. In this chapter, a 
phase-coded aperture camera for depth estimation is proposed. The camera is equipped 
with an optical phase mask that provides unambiguous depth-related color characteristics 
for the captured image. These are used for estimating the scene depth map using a fully-
convolutional neural network. The phase-coded aperture structure is learned together with 
the network weights using back-propagation. The strong depth cues (encoded in the 
image by the phase mask, designed together with the network weights) allow a much 
simpler neural network architecture for faster and more accurate depth estimation. 
Performance achieved on simulated images as well as on a real optical setup is superior 
to the state-of-the-art monocular depth estimation methods (both with respect to the depth 
accuracy and required processing power), and is competitive with more complex and 
expensive depth estimation methods such as light field cameras. 

5.1 Introduction 
While a single image lacks the depth cues that exist in a stereo image pair, there are still 
some depth cues, as detailed in Section 2.3.4, that enable depth estimation to some degree 
of accuracy. The ongoing deep learning revolution did not overlook this challenge, and 
some neural network-based approaches to monocular depth estimation exist in the 
literature [74], [75], [160]–[163]. 

Eigen et al. [74] introduced a deep neural network for depth estimation that relies on depth 
cues in the RGB image. They used a multi-scale architecture with coarse and fine depth 
estimation networks concatenated to achieve both dynamic range and resolution. Two 
later publications by Cao et al. [160] and Liu et al. [75] employed the novel fully-
convolutional network (FCN) architecture (originally presented by Long et al. [142] for 
scene semantic segmentation) for monocular depth estimation. In [160] the authors used 
a residual network [164], and refined the results using a conditional random field (CRF) 
prior external to the network architecture. In [75] a simpler FCN model was proposed, 
but with the CRF operation integrated inside the network structure. This approach is 
further researched using deeper networks and more sophisticated architectures [161]–
[163].  

Common to all these approaches is the use of depth cues in the RGB image 'as-is', as well 
as having the training and testing on well-known public datasets such as the NYU depth 
[60], [61] and Make3D [73]. Since the availability of reliable depth cues in a regular RGB 
image is limited, these approaches require large architectures with significant 
regularization (Multiscale, ResNets, CRF) as well as separation of the models to 
indoor/outdoor scenes.  
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A modification of the image acquisition process itself allows using a simpler model, 
generic enough to encompass both indoor and outdoor scenes. To take advantage of 
optical cues as well, the PSF should be depth-dependent. Related methods use an 
amplitude coded mask [31], [165] or a color-dependent ring mask [46], [166] such that 
objects at different depths exhibit a distinctive spatial structure. The main drawback of 
these strategies is that the actual light efficiency is only 50% in [31], [165],  60% in [46] 
and 80% in [166], making them unsuitable for low light conditions. Moreover, those 
techniques (except [166]) are based on the same low DOF setup, having a focal length of 
50mm, F#=1.8 lens (27.8mm aperture). Thus, they are also unsuitable for small-scale 
cameras since they are less sensitive to small changes in focus.  

In this chapter, a novel deep learning framework for the joint design of a phase-coded 
aperture element and a corresponding FCN model for single-image depth estimation, is 
presented. A similar phase mask has been proposed in [35], [36] for extended DOF 
imaging (see Section 3); its major advantage is light efficiency above 95%. Our phase 
mask is designed to increase sensitivity to small focus changes, thus providing an accurate 
depth measurement for small-scale cameras (such as smartphone cameras). 

The single ring RGB phase, presented in Section 3.1, demonstrated how color diversity 
can be utilized for EDOF imaging [36]. In Section 3.3, a multiple ring design was 
introduced to allow superior color diversity. In this chapter, the aperture coding mask was 
designed specifically for encoding strong depth cues with negligible light throughput loss. 
The coded image is fed to a FCN, designed to observe the color-coded depth cues in the 
image and thus, estimate the depth map. The phase mask structure is trained together with 
the FCN weights, allowing end-to-end system optimization. For training, we created the 
‘TAUAgent' dataset with pairs of high-resolution realistic animation images and their 
perfectly registered pixel-wise depth maps.  

Since the depth cues in the coded image are much stronger than their counterparts in a 
clear aperture image, the proposed FCN is much simpler and smaller compared to other 
monocular depth estimation networks. The joint design and processing of the phase mask 
and the proposed FCN lead to an improved overall performance:  better accuracy and 
faster run-time compared to the known monocular depth estimation methods are attained. 
Also, the achieved performance is competitive with more complex and higher cost depth 
estimation solutions such as light field cameras.  

5.2 Outline 
This chapter is organized as follows:  

Section 5.3 presents the phase-coded aperture used for encoding depth cues in the image, 
and its optimization process. Section 5.4 describes the FCN architecture used for depth 
estimation and a demonstration of its performance on synthetic data. Experimental results 
on real images acquired using an optical setup with a manufactured optimal aperture 
coding mask are presented in Section 5.5. Our system is shown to exhibit superior 
performance in depth accuracy, reduced system complexity, as well as lower processing 
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power compared to competing methods. In Section 5.6, a 3D model reconstruction 
example is presented to illustrate the advantage of a metrical depth map system. Section 
5.7 summarizes the chapter. 
 

5.3 Mask design 
In order to find the optimal phase mask parameters within a deep learning-based depth 
estimation, the imaging stage is modeled as the initial layer of a CNN model. The inputs 
to this coded aperture convolution layer are the all-in-focus image and its corresponding 
depth map. The coded aperture convolution layer parameters (or weights) are the radii 
and phase shifts  of the mask's rings.  

The layer forward model is composed of the coded aperture PSF calculation (for each 
depth in the relevant depth range) followed by imaging simulation using the clean input 
image and its corresponding depth map. The backward model uses the inputs from the 
next layer (backpropagated to the coded aperture convolutional layer) and the derivatives 
of the coded aperture PSF,  (Eq. (12)), with respect to its weights, , , 
in order to calculate the gradient descent step on the phase mask parameters. One of the 
important hyper-parameters of such a layer is the depth range under consideration (in 
terms). The  range setting, together with the lens parameters (focal length, F# and focus 
point) dictates the trade-off between the depth dynamic range and resolution. In this 
study, we set this range to ; its conversion to the metric depth range is 

presented in Eq. (68) 

As mentioned above, the optimization of the phase mask parameters is done by 
integrating the coded aperture convolutional layer into the CNN model detailed in the 
sequel, followed by the end-to-end optimization of the entire model. To validate the coded 
aperture layer, we compared the case where the CNN (described in the following section) 
is trained end-to-end with the phase coded aperture layer to the case where the phase mask 
is held fixed to its initial value. The training of the phase mask improves the classification 
error by 5% to 10%. 

For our setup, the optimization process yields a three rings mask such that the outer ring 
is deeper than the middle one as illustrated in Fig. 28 (Section 3.3). Such a design poses 
some fabrication challenges for the chemical etching process used at our facilities. To 
make the fabrication process simpler and more reliable, a two-ring limitation was set in 
the training process; this resulted in the normalized ring radii and 
phases . This optimized mask design was almost identical to the mask 
design using the method presented in Section 3.3. However, the data driven optimization, 
presented in this section, provides an important set of tools which can be utilized for 
optimizing other tasks in computer vision such as classification, denoising etc. 
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5.4 FCN for Depth Estimation 
We now turn to describe the architecture of our fully convolutional network (FCN) for 
depth estimation, which relies on optical cues encoded in the image achieved via using 
the phase coded aperture incorporated in the lens as described in Section 4.4.2. These 
cues are used by our FCN model to estimate the scene depth. Our network configuration 
is inspired by the FCN structure introduced by Long et al. [142]. That work converts an 
ImageNet classification CNN to a semantic segmentation FCN by adding a deconvolution 
block to the ImageNet model, and then fine-tunes it for semantic segmentation (with 
several architecture variants for increased spatial resolution). For depth estimation using 
our phase coded aperture camera, a totally different 'inner net' should replace the 
``ImageNet model''. The inner net should classify the different imaging conditions (i.e. 

 values), and the deconvolution block will turn the initial pixel labeling into a full depth 
estimation map. We tested two different 'inner' network architectures: the first based on 
the DenseNet architecture [167], and the second based on a traditional feed-forward 
architecture. A full FCN based on both inner nets is presented, and the trade-off is 
discussed. The following sub-sections present the  classification inner nets, and the 
FCN model based on them for depth estimation.  
 

5.4.1  classification CNN 
As described in Section 5.3, the phase coded aperture is designed along with the CNN 
such that it encodes depth-dependent cues in the image by manipulating the response 
between the RGB channels in each depth. Using these strong optical cues, the depth slices 
(i.e.  values) can be classified using some CNN classification model.  

For this task, we tested two different architectures; the first one based on the DenseNet 
architecture for CIFAR-10, and the second based on the traditional feed-forward 
architecture of repeated blocks of convolutions, batch normalization [139] and rectified 
linear units [131] (CONV-BN-ReLU, see Fig. 48). In view of the approach presented in 
[138], pooling layers are omitted in the second architecture, and stride of size 2 is used in 
the CONV layers for lateral dimension reduction. This approach allows much faster 
model evaluation (only 25% of the calculation in each CONV layer), with minor loss in 
performance. 

 

 

Fig. 48: Neural network architecture for the depth classification CNN (the 'inner' net in 
the FCN model in Fig. 49). Spatial dimension reduction is achieved by convolution 

stride instead of pooling layers. Every CONV block is followed by BN-ReLU layer (not 
shown in this figure). 
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To reduce the model size and speed up its evaluation even more, the input (in both 
architectures) to the first CONV layer of the net is the raw image (in mosaicked Bayer 
pattern). By setting the stride of the first CONV layer to 2, the filters response remains 
shift-invariant (since the Bayer pattern period is 2). This way the input size is decreased 
by a factor of 3, with minor loss in performance. This also omits the need for the 
demosaicing stage, allowing faster end-to-end performance (in cases where the RGB 
image is not needed as an output, and one is interested only in the depth map). One can 
see the direct processing of mosaicked images as a case where the CNN representation 
power 'contains' the demosaicing operation, and therefore it is not really needed as a 
preprocessing step. 

Both inner classification net architectures are trained on the Describable Textures Dataset 
(DTD) [168]. About 40K texture patches (32x32 pixels each) are taken from the dataset. 
Each patch is 'replicated' in the dataset 15 times, where each replication corresponds to a 
different blur kernel (corresponding to the phase coded aperture in ). The 
first layer of both architectures is the phase-coded aperture layer, whose inputs are the 
clean patch and its corresponding  value. After the imaging stage is done, an Additive 
White Gaussian Noise (AWGN) with  is added to each patch to make the network 
more robust to noise, which appear in images taken with a real-world camera. Data 
augmentation of four rotations is used to increase the dataset size and achieve rotation 
invariance. The dataset size is about 2.4M patches, where 80% of it is used for training 
and 20% is used for validation. both nets are trained to classify into 15 integer values of 

 (between -4 and 10) using the softmax loss. These nets are used as an initialization 
for the depth estimation FCN, as presented in the following sub-section.  
 

5.4.2 RGBD Dataset 
The deep learning based methods for depth estimation from a single image mentioned in 
Section 5.1 [74], [75], [160]–[163] rely strongly on the input image details. Thus, most 
studies in this field assume an input image with a large DOF such that most of the acquired 
scene is in focus. This assumption is justified when the photos are taken by small aperture 
cameras as is the case in datasets such as NYU Depth [60], [61] and Make3D [73] that 
are commonly used for the training and testing of those depth estimation techniques. 
However, such optical configurations limit the resolution and increase the noise level, 
thus, they reduce the image quality. Moreover, the depth maps in those datasets are prone 
to errors due to depth sensor inaccuracies and calibrations issues (alignment and scaling) 
with the RGB sensor. 

Our unique optical setup requires a dataset containing simulated phase coded aperture 
images and the corresponding depth maps. To simulate the imaging process properly, the 
input data should contain high resolution, all in-focus images with low noise, 
accompanied by accurate pixelwise depth maps. This kind of input may be generated 
almost only using 3D graphic simulation software. Thus, we use the popular MPI-Sintel 
depth images dataset [169], created by the Blender 3D graphics software. The Sintel 
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dataset contain 23 scenes with total of ~1k images. Yet, because it has been designed 
specifically for optical flow evaluation, the depth variation in each scene does not change 
significantly. Thus, we could only use about 100 unique images, which are not enough 
for training. The need for additional data has led us to create a new Sintel-like dataset 
(using Blender) called ‘TAUAgent', which is based on the new open movie 'Agent 327'. 
This new animated dataset, which relies on the new render engine 'Cycles', contains 300 
realistic images (indoor and outdoor), with resolution of , and corresponding 
pixelwise depth maps. With rotations augmentation, our full dataset contains 840 scenes, 
where 70% are used for training and the rest for validation. 
 

5.4.3 Depth estimation FCN 
In similarity to the FCN model presented by Long et al. [142], the inner  classification 
net is wrapped in a deconvolution framework, turning it to a FCN model (see Fig. 49).  
The desired output of our depth estimation FCN is a continuous depth estimation map. 
However, since training continuous models is prone to over-fitting and regression to the 
mean issues, we pursue this goal in two stages. In the first one, the FCN is trained for 
discrete depth estimation. On the second step, the discrete FCN model is used as an 
initialization for the continuous model training.  

 

 

Fig. 49: Network architecture for the depth estimation FCN. The depth ( ) 
classification network (see Fig. 48) is wrapped in a deconvolution framework to provide 

depth estimation map equal to the input image size.  

 

In order to train the discrete depth FCN, the Sintel and Agent datasets RGB images are 
blurred using the coded aperture imaging model, where each object is blurred using the 
relevant blur kernel according to its depth (indicated in the ground truth pixelwise depth 
map). The imaging is done in a quasi-continuous way, with  step of 0.1 in the range of 

. This imaging simulation can be done in the same way as the 'inner' net 

training, i.e. using the phase coded aperture layer as the first layer of the FCN model. 
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However, such step is very computationally demanding, and do not provide significant 
improvement (since the phase-coded aperture parameters tuning reached its optimum in 
the inner net training). Therefore, in the FCN training stage, the optical imaging 
simulation is done as a pre-processing step with the best phase mask achieved in the inner 
net training stage. In the discrete training step of the FCN, the ground-truth depth maps 
are discretized to  values. The Sintel/Agent images (after imaging 
simulation with the coded aperture blur kernels, RGB-to-Bayer transformation and 
AWGN addition), along with the discretized depth maps, are used as the input data for 
the discrete depth estimation FCN model training. The FCN is trained for reconstructing 
the discrete depth of the input image using softmax loss. 

After training, both versions of the FCN model (based on the DenseNet architecture and 
the traditional feed-forward architecture) achieved roughly the same performance, but 
with a significant increase in inference time (x3), training time (x5) and memory 
requirements (x10) for the DenseNet model. When examining the performance, one can 
see that most of the errors are on smooth/low texture areas of the images, where our 
method (which relies on texture) is expected to be weaker. Yet, in areas with 'sufficient' 
texture, there are also encoded depth cues which enable good depth estimation even with 
relatively simple DNN architecture.  

This similarity in performance between the DenseNet based model (which is one of the 
best CNN architectures known to date) to a simple feed-forward architecture is a clear 
example to the inherent power of optical image processing using coded aperture- a task 
driven design of the image acquisition stage can potentially save significant resources in 
the digital processing stage. Therefore, we decided to keep the simple feed-forward 
architecture as the chosen solution. 

To evaluate the discrete depth estimation accuracy, we calculated a confusion matrix for 
our validation set (~250 images, see Fig. 50). After 1500 epochs, the net achieves 
accuracy of 68% (top-1 error). However, the clear majority of the errors are to adjacent 

 values, and on 93% of the pixels the discrete depth estimation FCN recover the correct 
depth with a  error of . As already mentioned above, most of the errors originate 
from smooth areas, where no texture exists and therefore no depth dependent color-cues 
were encoded. This performance is sufficient as an initialization point for the continuous 
depth estimation network. 

The discrete depth estimation (segmentation) FCN model is upgraded to a continuous 
depth estimation (regression) model using some modifications. The linear prediction 
results serve as an input to a  CONV layer, initialized with linear regression 
coefficients from the   predictions to a continuous  values (  values can be easily 
translated to depth value in meters, assuming known lens parameters and focus point).  

The continuous network is fine-tuned in an end to end fashion, with lower learning rate 
(by a factor of 100) for the pre-trained discrete network layers. The same Sintel & Agent 
images are used as an input, but with the quasi-continuous depth maps (without 
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discretization) as ground truth, and L2 or L1 loss. After 200 epochs, the model converges 
to Mean Absolute Difference (MAD) of . 

 

 

Fig. 50: Confusion matrix for the depth segmentation FCN validation set 
. 

5.4.4 Validation set results 
As a basic sanity check, the validation set images can be inspected visually. As shown in 
Fig. 51, the depth cues encoded in the input image are hardly visible to the naked eye, 
however, the proposed FCN model achieves quite accurate depth estimation maps 
compared to the ground truth. Most of the errors are concentrated in smooth areas, as 
mentioned in previous section. The continuous depth estimation smooths the initial 
discrete depth recovery, achieving a more realistic result. 

Notice the difference in the estimated maps when using the L1 loss (Fig. 51 (c)) and the 
L2 loss (Fig. 51 (d)). The L1 based model produces smoother output but reduces the 
ability to distinguish between fine details while the L2 model produces noisier output but 
provide sharper maps. This is illustrated in all scenes when the gap between the body and 
the hands of the characters is not visible as can be seen in Fig. 51 (c). Note that in this 
case the L2 model produces a sharper separation (Fig. 51 (d)). 

The estimated maps in Fig. 51 (c-d) also presents a few limitations of our method. In the 
top row, the fence behind the bike wheel is not visible in our estimation since the fence 
wires are too thin. In the middle and bottom rows, the background details are not visible 
due to low dynamic range in these areas (the background is too far from the camera). 

As mentioned above, our method estimates the blur kernel (  value), using the optical 
cues encoded by the phase coded aperture. An important practical analysis is the 
translation of the  estimation map to metric depth map. Using the lens parameters and 
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the focus point, transforming from  to depth is straight-forward (see Eq. (68)). Using 
this transformation, the relative depth error can be analyzed. By setting a focus point, the 

 domain is spread to some depth dynamic range. Close focus point dictates 

small dynamic range and high depth resolution, and vice versa. However, since the FCN 
model is designed for  estimation, the model (and its ’s related MAD) remains the 
same. After translating to metric maps, the Mean Absolute Percentage Error (MAPE) is 
different for each focus point. Such analysis is presented in Fig. 52, where the aperture 
diameter is set to 2.3[mm] and the focus point changes from 0.1[m] to 2[m], resulting 
with a working distance of 9[cm] to 30[m]. One can see that the relative error is roughly 
linear with the focus point, and remains under 10% for relatively wide-focus point range. 

 

 

Fig. 51: Depth estimation results on simulated image from the 'Agent' dataset - (a) 
original input image (the actual input image used in our net was the raw version of the 

presented image), (b) Continuous ground truth (c-d) Continuous depth estimation 
achieved using the L1 loss (c) and the L2 loss (d). 

 

 
Fig. 52: MAPE as a function of the focus point using our continuous network. 
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5.5 Experimental results and comparison 
To test the proposed depth estimation method, several experiments were carried. The 
experimental setup included an f=16mm, F#=7 lens (LM16JCM-V by Kowa) with our 
phase coded aperture incorporated in the aperture stop plane (see Section 4.4.2). The lens 
was mounted on a UI3590LE camera made by IDS Imaging. The lens was focused to 

, thus, the  domain was spread between . Several 

scenes were captured using the phase coded aperture camera, and the corresponding depth 
maps were calculated using the proposed FCN model.  

For comparison, two competing solutions were examined on the same scenes: Illum light 
field camera (by Lytro), and the monocular depth estimation net proposed by Liu et al. 
[75]. Since the method in [75] assumes an all in-focus image as an input, we used the 
Lytro camera all in-focus imaging option as the input to [75].  

It is important to note that while our proposed method provide depth maps in absolute 
values (meters), the Lytro camera and [75] provide a relative depth map only (far/near 
values with respect to the scene). Another advantage of our technique is that it requires 
the incorporation of a very simple optical element to an existing lens, while light-field 
and other solutions like stereo require a much more complicated optical setup. In the 
stereo camera, two calibrated cameras are mounted on a rigid base with some distance 
between them. In the light field camera, special light field optics and detector are used. 
In both cases the complicated optical setup dictates large volume and high cost.  
 

 

Fig. 53: Indoor scene (side view). 
 
We examined all the solutions on both indoor and outdoor scenes. The indoor setup 
included objects that were laid on a table with a poster in the background (see Fig. 53 for 
a side view of the scene). The indoor example is presented in Fig. 54. Since the scene 
lacks global depth cues (especially in the background poster), the method from [75] fails 
to estimate a correct depth map. The Lytro camera estimates the gradual depth structure 
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of the scene with good identification of the objects, but in a relative scale only. Our 
method succeeds to identify both the gradual depth of the table and the fine details of the 
objects (note the screw located above the truck on the right). Note that some scene texture 
'seeps' to our recovered depth map. Yet, it causes only a minor error in the depth estimate.  

 

 

Fig. 54: Indoor scene depth estimation. Left to right: (a) the scene and its depth map 
acquired using (b) Lytro Illum camera, (c) Liu et al. [75] monocular depth estimation 

net, (d) our method. As each camera has a different field of view, the images were 
cropped to achieve roughly the same part of the scene. The depth scale on the right is 
relevant only for (d). Because the outputs of (b)&(c) provide only a relative depth map 
(and not absolute as in the case of (d)), their maps were brought manually to the same 
scale for visualization purposes. More examples appear in the supplementary material. 
 

 

Fig. 55: Outdoor scenes depth estimation}. Depth estimation results for a granulated 
wall (upper) and grassy slope with flowers (lower) scenes.  From left to right: (a) the 

scene and its depth map acquired using (b) Lytro Illum camera, (c) Liu et al. [75] 
monocular depth estimation net, (d) our method. See caption of Fig. 54 for more details. 

 

Similar comparison is presented for two outdoor scenes in Fig. 55. On its first row, we 
have a scene with a granulated wall. In this example, the global depth cues are also weak, 
and therefore the monocular depth estimation fails to separate the close vicinity of the 
wall (right part of the image). Both the Lytro and our phase coded aperture camera 
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achieve good depth estimation of the scene. Note though that our camera has the 
advantage that it achieves an absolute scale and uses much simpler optics.  

On the second row of Fig. 55, we have a grassy slope with flowers. In this case, the global 
depth cues are stronger. Thus, the monocular method [75] does better compared to the 
previous examples, but still achieves only a partial depth estimate. Lytro and our camera 
achieve good results. 

Besides the depth map recovery performance and the simpler hardware, another important 
benefit of our proposed solution is the required processing power/run time. The fact that 
depth cues are encoded by the phase mask enables much simpler FCN architecture, and 
therefore much faster inference time. This can be considered as some of the processing 
was done by the optics (in the speed of light, with no processing resources needed).  

For example, for a full-HD image as an input, our proposed network evaluates a full-HD 
depth map in  (using Nvidia Titan X Pascal GPU). For the same sized input on 
the same GPU, the net presented in [75] evaluates a 3-times smaller depth map in  
(Timing was done by us using the same machine and the implementation of the network 
in [75] that is available at the authors' website). Of course, if a one-to-one input image to 
depth map ratio is not needed, the output size can be reduced, and our FCN will run even 
faster.  

Another advantage of our method is that the depth estimation relies mostly on local cues 
in the image. This allows performing the computations in a distributed manner. The image 
can be split, and the depth map can be evaluated in parallel on different resources. The 
partial outputs can be recombined later with barely visible block artifacts.  

 

5.6 3D modeling 
As mentioned in the previous sections, our system is designed to handle range of 

but the metric range depended on the focus point selection (see Section 5.4.4). 

This codependency allows one to use the same FCN model with different optical 
configurations.  

To demonstrate this important advantage, we simulated an image (Fig. 56 (top)) captured 
with aperture of  (1.5 the size of our original aperture used for training). The 

larger aperture provides better metrical accuracy in exchange of reducing the dynamic 
range. The focus point was set to , providing a working range of to 

. We then produced an estimated depth map, which was translated into point cloud 

data using the camera parameters (sensor size and lens focal length) from Blender. The 
3D face reconstruction, shown in Fig. 56(bottom), also validates our metrical depth 
estimation capabilities as we were able to create this 3D model in real time. 
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Fig. 56: 3D face reconstruction. Input image (left) and point cloud output (right). 

 

5.7 Chapter summary 
In this chapter, a method for real-time depth estimation from a single image using a phase 
coded aperture camera, was presented. The phase mask is designed together with the FCN 
model using back propagation, which allows capturing of images with high light 
efficiency and color-coded depth cues, such that each color channel responds differently 
to OOF scenarios. Taking advantage of this coded information, a simple convolutional 
neural network architecture is proposed to recover the depth map of the captured scene.  

This proposed scheme outperforms state-of-the-art monocular depth estimation methods 
by having better accuracy, more than an order of magnitude speed acceleration, less 
memory requirements and hardware parallelization compliance. In addition, our simple 
and low-cost solution shows comparable performance to commercial solutions such as 
the Lytro cameras that cost hundreds of dollars. 

Moreover, as opposed to the relative depth maps produced by those monocular methods 
and the Lytro camera, our system provides an absolute (metric) depth estimation, which 
can be useful to many computer vision applications, such as 3D modeling and augmented 
reality. 
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6. Thesis summary 
The synergy between hardware and software is what make the field of computational 
photography so exciting. The art in computational photography is to bring together 
different methods to create new type of systems. The unlimited design possibilities can 
overcome some of the most challenging problems in imaging and processing. As 
conventional cameras are bound by optical and sampling lows, the new and exciting field 
of CP is the obvious next step in cameras evolution.  

In this research, a low cost, thin phase mask plate, is utilized alongside with several 
dedicated computational stages, to produce computational camera which enable EDOF 
imaging the depth estimation in real-time. A specifically attention was given to creating 
a small-scale camera for future implementation in smartphones and to allow design 
flexibility for various of different camera configurations. This dissertation demonstrates 
the complete design process of creating a computational camera, form optical design and 
fabrication, through algorithm implementation. The capabilities of this system have been 
demonstrated with real-life scenarios which offered some competitive results to 
commercial cameras such as Lytro. With the rise of deep learning in the last years, future 
studies should be dedicated to finding other usage for optic manipulation based imaging 
system.    
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Appendix A – Fast mask search 
As presented in Section 3.3, the search for the optimal mask parameters required 
calculation of the PSF derivative, whereby according to Eq. (46), one needs to compute 
the FFT of two  matrices (size of the sample grid of the pupil function). The FFT 
operation is the most computationally expensive part of this process. If we set the phase 
search to  with a  accuracy, the number of phases under 

consideration for a configuration consisting of three rings (see Fig. 57) is ~30k. The 
hereby presented method reduces the required FFT operation for each scenario, by 
replacing it with matrix addition. This produces a speed up of up to 30 times.  

 

 

Fig. 57: Phase mask’s rings location 

 

The radial symmetric pupil consists of mask radii  as illustrated in Fig. 57, 

and provides four phases  (from center to outer ring). Since the phase is 

relative the first phase  is set to zero. For a given focus scenario, this pupil can be 
represented as a sum of four circular aperture: 

 

n n´

[ ]0,15 radf = 0.5rad

0 1 2 3, , ,R R R R

0 1 2 3, , ,f f f f

0f

( ) ( ) { }

{ } { }( )

{ } { }( )

{ } { }( )

2

2
3

2

2
3

2

2
3

2

2
3

3
3

2 3
2

1 2
1

0 1
0

, exp

exp exp

exp exp

exp exp

rj
R

rj
R

rj
R

rj
R

rP r P r circ e j
R

rcirc e j j
R

rcirc e j j
R

rcirc e j j
R

f

f f

f f

f f

æ ö
Yç ÷ç ÷
è ø

æ ö
Yç ÷ç ÷
è ø

æ ö
Yç ÷ç ÷
è ø

æ ö
Yç ÷ç ÷
è ø

Y

æ ö
Y = = ×ç ÷

è ø

æ ö
+ × -ç ÷

è ø

æ ö
+ × -ç ÷

è ø

æ ö
+ × -ç ÷

è ø



112 
 

If we define  for  and ,the pupil 

be expressed as:  

   (69) 

Now, using Eq. (46), the PSF derivative is: 

   (70) 

Defining a new function  as: 

   (71) 

Eq. (70) reduces to: 
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Notice that the second term in Eq. (72) consists of the imaginary part of the multiplication 
between the mask parameters parameter and . We can isolate the mask parameters 

from the  matrices such that: 
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Now we only require calculating ten matrix additions. This results in a speed up of about 
30 times in comparison to using the direct expression of Eq. (46) (Using MATLAB).  

In practice, we accelerated the process by calculating a known RGB mask (4π for 
example) merit function (Eq. (49)). For the first  parameter, the Joint PSFDE value 
was calculated for each mask. Masks whose Joint PSFDE score was lower than our 
benchmark mask merit score, were removed from the search, making the next iteration 
faster.   
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 םינשייחהו הקיטפואה םוחתב תוילנויצנבנוקה תויגולונכטהש דועב .םילבגומ הנומתה תוכיא רופישל
 .הנומתה דוביע םוחתב םידקמתמ םויכ םוחתב םיחותיפה בר ,םאישל ועיגה םיילטיגידה

 תוליבומה היגולונכטה תורבח לש םביל תמושת תא ךשמו תונורחאה םינשב לדג "בשחוממה םוליצ"ה םוחת
 תנמ לע תונומתה תשכרה ךילהתב היצלופינמ תעצובמ ,בשחוממ םוליצב .גנוסמסו לפא ,לגוג ןוגכ םלועב
 היארהו םוחתבו הנומת דוביעב םימושיי לש בחר ןווגמל שמשל לוכי רשא ,רתוי ליעי דוביע רשפאל
 תונטק תומלצמב העמטה רובע דחוימב הננכות רשא תבשחוממ המלצמ הרקחנ וז הדובע תרגסמב .תבשחוממה
 .תדדוב הנומתמ קמוע תפמ תריציל ףסונב לדגומ הדש קמועב םוליצ תרשפאמ וז המלצמ .)םינופלט תומלצמ(
 רשא ,ידממ-תלת לודימו םוליצה רחאל סוקופה יוניש ןוגכ תומדקתמ םוליצ תויצקנופ תורשפאמ ולא תולוכי
  .תוימונוטוא תוינוכמו הדובר תואיצמ תמגודכ םימושייב בלתשהל םילוכי

 אל"כ העודי וז היעב .סוקופב אל רשא תונומת לש רוזחיש וניה םוליצה םוחתב םיכבוסמה םירגתאה דחא
 ןורתפ העיצמ ,תירטמיסו תיראניב הזאפ הכיסמ .הימדהה ךילהתב םלענ עדימהמ קלחש רחאמ "בטיה תרדגומ
 תבשחוממה היארה םוחתב תויצקילפא רובע תקפסמ הנומת תוכיא קפסמ רשא ,הדש קמוע תלדגהל לוז יטפוא
 תידוחיי הבוגת תרצוי רשא ,RGB תכסמב שומיש השענ וז הדובע ךלהמב .םינפ יוהיזו םידוקרב תאירק ןוגכ
 .הנוש סוקופ תבוגת םע תחא לכ ,תינמז וב תונומת שולש תולבקתמש ךכ ,לוחכו קורי ,םודאל

 תלעב תחא תינועבצ הנומתל עבצה יצורע תשולש דוחיאל תוטיש חותיפל שדקומ וז הדובע לש ירקיעה הקלח
 םאתוה רשא ,לילד גוציי לדומ לע ססובמ רשא ליעי דוביע םתירוגלא ידי-לע ,רפושמ הארמו לדגומ הדש קמוע
 בשחוממ םוליצ תכרעמ הלבקתהש ךכ FPGA חול יבג לע םג שמומ דוביעה בלש .וז םוליצ תכרעמל יפיצפס
 .המלצמהמ םינוש םיקחרמב םיטקייבוא רפסמ ןהבש תונצס םע רוויע ןפואב דדומתהל תעדוי רשא תמא ןמזב
 ."תויעבט" תונצס לש ימוי-םוי םוליצ רובע תילאידיא היהת וז תכרעמ

 תקפסמ RGB-ה תכיסמ .תדדוב הנומתמ קמוע תפמ תריציל תוטיש יתש וגצוי וז הדובע לש ינשה הקלחב
 רובע סוקופה בצמ לע עדימ םיליכמ ולא םיזמר .םייטמורכ םיזמר םע הנומת תרצויה ,קמוע תיולת עבצ תבוגת
 הנושארה הטישה .תירטמ קמוע תפמל לקנב  רימהל ןתינ התוא ,סוקופ תפמ ךורעשל שמשל םילוכיו לסקיפ לכ
 שומימ לע תדקמתמ היינשה הטישה .לדגומ הדש קמועב םוליצל שמיש רשא לילדה גוצייה לדומ לע תססובמ
 תוינויסינהו תויביטלומיס תואצותה .תויתוכאלמ תויבצע תותשר לע ססבתמ רשא קמועה תפמ לש ריהמ
 .תמא ןמזב תקיודמ קמוע תפמ תריצי םימיגדמ וז הדובעב תוגצומה
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